Computing Science Technical Report #47
THE PORT MATHEMATICAL SUBROUTINE LIBRARY

P. A. Fox. A. D. Hall and N. L. Schryer

May 1, 1977

Part 1: Description

Part 2: Utility program listings:

Machine constants
Error handling
Stack allocation

September 1976
Revised May 1977

The PORT Mathematical Subroutine Library

P. A. Fox, A. D. Hall, and N. L. Schryer

Beil Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The development at Bell Laboratories of PORT, a library of portable Fortran pro-
grams for numerical computation, is discussed.

Portability is achieved by careful language specification, together with the key
technique of specifying computer classes by means of pre-defined machine con-
stants.

The library is built around an automatic error-handling facility and a dynamic
storage allocation scheme, both of which are implemented portably. These,
together with the modular structure of the library, lead to simplified calling
sequences and ease of use.

March 22, 1979

The PORT Mathematical Subroutine Library

P. A. Fox, A. D. Hall and N. L. Schryer

Beil Laboratories
Murray Hill, New Jersey 07974

1. Introduction
We have celebrated the 25th anniversary of computer program libraries by producing another.

The library is called PORT. Our interest in developing it, and particularly our resolve to create a
portable library, can best be motivated by sketching a brief history of mathematical subroutine
libraries. A look at the tremendous effort that went into the early machine-dependent libraries,
each to be ultimately thrown on the scrap heap along with its passé computer, and a glance at
more recent developments involving either maintenance or generation of several machine-
dependent versions may indicate our drive to construct a single portable librarv. But first a
word on the historical setting.

It was indeed in 1951 that Maurice V. Wilkes, David J. Wheeler. and Stanley Gill, all of the
University of Cambridge, published their book: The Preparation of Programs for an Electronic
Digital Computer, subtitied With special reference to the EDSAC and the use of a library of sub-
routines, [Wilkes (1951)]. Their library was in machine language, but in that era the need for
moving the library 10 another computer, and the trauma involved, had not yet been experi-
enced. The very thought of having a library was new.

Since that time many libraries have been developed. Rice (1971a, Chapter 1) gives some histor-
ical notes including the remark that the Communications of the Association for Computing Mach-
inery published 73 algorithms during 1960-1961. Also in 1961 IBM made the decision to enter
the software field [Battiste (1971), page 121], and the SSP library was launched. Initially IBM
provided SSP free with the the hardware, but by 1971 IBM was charging (around $100/month)
for the new SL-Math library [IBM (1971)] developed in Germany for the 360/370/1130/1800
[BM computers.

Other libraries dating from the '60's, and we mention only a few, inciude the Monsanto
Company's subroutine library started in 1967, [Dickinson er al. (1971)], and the Boeing library
[Newbery (1971)], developed about the same time. The Harwell Atomic Energy Research
Establishment, in England, also in 1967, was converting their subroutine library, developed in
1963 for the IBM 7030 (STRETCH) computer, to an IBM 360 version, [Hopper (1973)]. In
December of 1967 the Sandia Mathematical Library Project [Jones and Bailey (1976)] was ini-
tiated, and doubtless many other library projects were underway, at that time, across the com-
puter worid.

By the early "70’s an appreciation of the magnitude of the effort required to establish libraries
was beginning to be felt. CDC, rather than developing a mathemartical library from scratch,
purchased the high-quality Boeing library. Also in 1970 a commercial library became available
when the International Mathematical and Statistical Libraries (IMSL) was incorporated [John-
son (1971)]. and produced Library 1 in Fortran for the IBM/360-370 series. Another approach
to avoiding duplication of effort was taken by the NATS (National Activity to Test Software)
group, [(Boyle er ai. (1972)]. which was established to produce quality special-purpose software
packages. The first of these, the eigenvalue-cigenvector package, EISPACK [Smith er al.
(1976)], is already in a second release. the package for special functions, FUNPACK. has
appeared, [Cody (1973)], and MINPACK (minimization package) and LINPACK(linear 2qua-
tions package) are being developed.

1-12

The libraries discussed above are written in Fortran: in other countries the language problem
(Algol vs. Fortran) adds to the difficulties. In England, the Numerical Algorithms Group
(NAG). (Ford and Sayers (1976)], has for some time been furnishing a large library in either
Algol or Fortran to a variety of types of computers across the universities of that country.

Throughout the development of these software packages. the effort involved in terms of man-
power, time, and money, not only to develop the packages, but to adapt them to particular
computers. has been a source of wonder, and the desire 10 have the software portable has been
growing. Even the early (1967) Monsanto library emphasized machine independence [Dickin-
son eral. (1971, page 143)], and Rice (1971b) has emphasized the importance of making qual-
ity software transportable. In fact he makes the rather striking observation that, ‘It has been
estimated that 60%-90% of all research and development work is a duplication of previous
work, and it is easy to believe that this applies to mathematical software with perhaps an even
higher percentage than 90."’ The development of mathematical subroutine libraries is certainly a
case in point,

At Bell Labs, in 1967, Gentleman and Traub [1968] proposed the development of a machine-
independent library using a Fortran-Algol interface to alleviate the language problem. Three
sets of programs were implemented in that effort: DESUB (differential equation solution),
NSEVB (eigenvalues and eigenvectors of nonsymmetric matrices). and MIDAS (linear equation
solution). The work described in the present paper is an independent effort, initiated in 1973.
PORT does not include any of the earlier programs, but the experience gained in that work has
been useful.

Preview

In the next section we discuss portability: the definition of the term. the several factors inhibit-
ing porntability, the solutions taken by others in some of the libraries we have discussed, and the
procedures we have applied toward portability. In the following section of the paper we
describe in more detail the structure of the PORT library — in particular the simplified calling
sequences, the error monitoring and error handling, and the dynamic storage allocation —
relating each topic 1o the corresponding approaches used in other libraries. Finaily, we give an
overview of the contents of PORT, that is, the subprograms inciuded in the current edition. To
keep the size of the paper down somewhat, we defer discussion of other aspects of the library
to another time. Relevant topics not covered here include algorithm selection. implementation.
testing, refereeing, documentation, cartification, and distribution, as well as installation pro-
cedures and maintenance.

Part 2 of this report contains the listings for the basic PORT utilities, and includes a brief sum-
mary of their use.

2. Portability

Definitions of “portability’ are rampant: the view is so clouded that we might do weil to adopt
an entirely new term. possibly that used by Waite (1970) in another connection: ‘motility.” The
problem is that there is a continuum of degress of portability, from ‘completely’ to “not at all’.
Clearly an unportable Fortran program could be made even less so by recoding it in assembier
language. W. S. Brown (1970), recognizing this matter of degree. offered the definition: A
program or programming system is called "portable’ if the effort required to move it into a new
environment is much less than the effort that would be required to reprogram it for the new
environment.”” The environment, of course, includes the computer, the compiler. the operating
system and the particular computer hardware/software configuration.

Aird er al. (197%) define four distinct concepts to span the high end of the specirum: (1) port-
able, (2) convarter portabie, (3) processor portable, and (4) transportabie. They call a program

1-3

“portable, across a set of computer-compiler environments if, without any modification, it can
be compiled and executed, according to defined performance criteria, for every member of the
set.”” The second and third definitions cover the cases where a ‘master version' of the library is
established and a processor is provided that can particularize the program to a particular
member of the set of computer-compiler environments. The term, ‘converter portabie,’ is dis-
tinguished from ‘processor portable’ in indicating that the unprocessed version runs. without
alteration, in at least one environment. Finally they term a program ‘transportable’ if enough
information is available to guide a required particularization, perhaps even by hand. (Note that
this is an imprecise paraphrase of their very careful definitions.)

The IFIP Working Group 2.5 (on Numerical Software) has proposed, in a working paper draft,
the following definitions [Ford and Smith (1975)]:

Portable

A program is portable over a given range of machines and compilers if withour any altera-
rion, it can compile and run to satisfy specified performance criteria on that range.

Transportable

In transferring a program between members of a given range of machines and compilers,
some changes may be necessary to the base version before it satisfies specified perfor-
mance criteria on each of the machines and compilers. The program is transportable if

(1) the changes lend themselves to mechanical implementation by a processor.
(2) ideally the changes are limited in number, extent and complexity.

In PORT we have so far taken the view that the library subprograms must be portable in the IFIP
sense, with the exception that the three machine-constant defining functions must be particular-
ized to the host computer once, at installation. Section 2.2 of the paper discusses the details of
the approach.

What gets in the way of portability?

A routine that runs well on one computer may run badly or not at all on another. Iis failure
may be due to language and compiler differences, to differing word structures. to variations in
arithmetic (both static number representation and dynamic performance), or 1o differences in
operating systems. If a library of mathematical subroutines aspires to portability, each of these
problems must be solved.

2.1. Overview of various libraries and their approach to portability

There is g2neral agreement among the developers of mathematical libraries on one major point:
only one source should be maintained. But there is a wide divergence of opinion 2s to what the
source should look like, and particularly how much coded information it should contain. Soms
would urge that the master source should work in at least one environment without change,
that is, be converter portable in terms of the definition cited above. The deveiopers of the
IMSL library take this view: the library is based on a source called the basis deck. which exists
as an executable deck in one environment. but which contains control information, in the rorm
of keyed comment cards, permitting a converter program to generate a deck for another
computer-compiler environment, or to generate a double-precision version of the program.
[Aird er al. (1975)]. The NATS project in its initial work with EISPACK used a similar
approach [Boyvle and Dritz (1974)].

The NAG library is based on a master library file system consisting of card-image files and
thres main utility programs which operate on the files {Hague and Ford (1976)]. The programs

1-4

include editors, selectors. and extractor-comparison programs. all written in Fortran with some
assembly code routines. The programming took about 18 man-months to complete. A second
version to be written in Algol 68 is under study.

Krogh (1974,1976) has developed a method, called the “specializer language’, for maintaining a
composite source. The approach, which is rather like the IMSL approach, allows code to be
specified for different machine environments and for different base precisions.

A few library projects are beginning to take the view that the master tape or composite source
should be a more abstract vehicle. The NATS Il system, in fact. is based on the concept of the
‘abstract form” of a program combined with control programs [Boyle and Dritz (1974)]. One of
these, the ‘recognizer’ can map Fortran programs written for a variety of computer systems into
the abstract form. Then to generate particularized programs from the abstract form a ‘for-
matter’ program is used.

Most of the composite or master sources are based on a system of flagged comment cards, con-
trol cards and other types of record-based selection clues. Some use has been made of macro
capabilities to generate particularized versions, and Bovle and Dritz (1974) have proposed actu-
aily parsing the Fortran input and storing the symbol table and parse tree as the master or com-
posite tape.

In the various schemes for maintaining a master source proposed to. date. it has generally been
true that either the source. or the programs which generate particularized programs from the
coded source, assume the existence of a finite set of specific machines; each program in the
master source contains information on the attributes of the given computer environmenis. [f
this approach is used, the introduction of a new computer-compiler configuration into the
scheme presents a major problem — in essence, portability has been defined only with respect
to the initial set of computers.

A better way of approaching the problem. in our view, is to formuiate an idealized, but robust,
mode!l of a computer from the standpoint of numerical computation. The model should be
simple and vet apply to most existing (and many future) computers, and should be consonant
with an ANSI Fortran computing environment. Then. given the parameters defining the
model, portable software can be written from a truly machine-independent, but model-dependen:
orientation. To particularize the model for any given target site, appropriate values for the
parameters can be set in a simple way. The model exemplified in PORT is described in some
detail below: further details on floating-point arithmetic in the model are given by Brown
(1977).

2.2. PORT and portability
The techniques used in the PORT library to make it easily portable are, then, the following:

(1) programs are written in 2 subset of ANSI Fortran
(2) the target environment is specified in terms of machine-dependent parameters

We have evidence of success to the extent that the PORT tape has been compiled and is in use
on thres IBM 360/370 computers, a UNIVAC 1100, two Honeywell 6000 series, a CDC Cyber
*72 system, a Harris $220. and a PDP 11.

Language

The programming language used for PORT subprograms is restrictad to the particular, portabie
subset of ANSI Fortran known as PFORT, described by Ryder (1974). Programs submitted 0
PORT are always sent through the PFORT Verifier program, described in that referencs, io
guarantee their adherence to this language requirement.

There are two non-ANSI Fortran usages made in PORT: both are valid for the usual production
system. First, it is assumed that there is no runtime subscript range checking. Second, tor

1-5

some of the subprograms implementing the error handling and stack ailocation it is assumed
that a variable (local to a subprogram) that is initialized by a DATA statement and then
changed within the subprogram, retains its most recently assigned vaiue. If overlays are used
by a programmer, care must be taken to avoid overlaying these few routines. These issues and
others related to portability are discussed in more detail in Appendix A.

Although the ANSI Fortran Standard makes the assumption that LOGICAL, INTEGER., and
REAL data are allocated one ‘storage unit’’ and that DOUBLE PRECISION and COMPLEX
data are allocated two ‘‘storage units’', the assumption is frequently violated in minicomputer
Fortran systems. To allow for use of the library on these smaller computer systems, we have
been careful, in formulating the dynamic storage scheme, to make it independent of the
amounts of storage allocated to the different data types.

Specification of machine-dependent quantities

Very early on in the development of mathematical subroutine libraries, the importance of iso-
lating the machine-dependent parameters and constants was recognized. Newbery (1971, page
155) notes that the Boeing library provided a single program whose function was to store these
values in one place. EISPACK uses only two machine-dependent constants: RADIX, the base
of the machine floating-point representation, and MACHEP (machine epsilon). the relative pre-
cision of the floating-point arithmetic. However, for more general libraries. it is convenient to
have a number of important machine and operating system dependent constants available.
Redish and Ward (1971), Aird er al. (1974), Krogh and Singletary (1976), and others have
presented lists of machine-dependent constants and parameters. The IFIP Working Group 2.3
is studying the matter in some detail [Ford (1976)], and presumably will propose a standard set.

Once a set of values is decided upon, there still remains the question of getting them into the
running programs. Four principal mechanisms come to mind:

(1) Dynamically sample the host computer using subroutines for discovering the base of
the arithmetic, the number of digits and so on, an approach discussed by Malcolm
(1972). Gentleman and Marovich (1974). and George (1975).

(2) Flag or mark the machine-dependent quantities in the master source tape, enabling
the correct values to be generated when a particular machine-dependent version of

the library is created. This approach is used, for example. in IMSL, [Aird er al.
(1975)1.

(3) Use a language (possibly a Fortran preprocessor) that allows global definitions of
variables. and build a portabie scheme based on that language’s capabilities.

(4) Develop library subprograms which can be particularized tor each target computer.
and then called, during run time, to obtain desired machine-dependent values. Red-
ish and Ward (1971) have proposed using this method. Their discussion is excel-
lent. Also Ford and Sayers (1976) note that the NAG II system uses a similar
approach, permitting machine-dependent numbers to be avaluated by procedure calls
to a sub-library, called the ‘constants and utilities library.’

Each of these mechanisms has its problems. The original version of (1) failed on compuiers,
such as the Honeywell 6000 or the ICL 4130, for which the floating-point registers contain
more digits than a word in storage. Later versions have had troubies stemming from the fact
that assumptions have to be made on computer hardware or compiler design. The techniques
used in (2) have been discussed above in Section 2.2. They have the advantage that the gen-
erated version can be tailored to be especially efficient for a given computer-compiler environ-
ment (including alters to get around known bugs), but a change of compiler, or a new com-
puter require extensive changes in the master source and the programs that control it. These
requirements, together with the fact that updatzs and corrections have to be generated in
machine-dependent form before being sent out. make a sizeable staff of maintenance people

1-6

necessary. Finally, the use of method (3) above, which may be the way of the future, means
giving up (or extending) Fortran, and that is hard to do right now.

In PORT we use the fourth approach: three Fortran function subprograms are provided which
can be invoked to determine basic machine or operating system dependent constants. When
the library is moved to a new environment, only the DATA statements in these three subpro-
grams need to be changed. Values are provided, in the library, for the Burroughs
5700/6700/7700, the CDC 6000/7000 Series, the Data General Eclipse S/200, the DEC PDP
10 (KA and KI processors), the DEC PDP 11, the Harris $220, the Honeywell 6000 Series. the
IBM 360/370 Series, the SEL Systems 85/86, the UNIVAC 1100 Series. and the XEROX
SIGMA 5/7/9. others can be added.

We have found this approach advantageous since the source code for the library, except for the
three subprograms. remains unchanged from one environment to another. A potential draw-
back to the approach is the difficulty of writing portable programs for some areas of numerical
computation. The field of special functions is the most trying: recursive algorithms are quite
portable, but not always adequate, and rational function approximations are machine-dependent.
We are looking into several techniques. inciuding program generators and other tactics, and we
have detected some promising directions.

But to return to our mechanism for specifving machine-dependent quantities, the three func-
tions are

[IMACH. which delivers integer constants,
RIMACH, which delivers single-precision floating-point (REAL) constants. and
DIMACH, which delivers double-precision floating-point constants.

The function names stem from the PORT convention that subprograms which will not be called
by the casual user are given names with a digit as the second character to help avoid name
conflicts. The functions have a single integer argument indicating the particular constant
desired. For example, IIMACH(2) is the logical unit number of the standard output unit, so
the statements

IWUNIT = I[IMACH(2)
WRITE (IWUNIT, 9003) . ..

will write output (using FORMAT statement 9003) on the standard output unit. As another
example, RIMACH(2) is the largest positive single-precision number, so if a program wishes to
test. a priori, whether the product xxy will overflow,(where x, y>1). it can include the test

[F (Y .GE. RIMACH(2)/X) GO TO overflow

(The ultra-precise reader may note that the subsequent multiplication might still overflow by as
much as two round-off units, so the test should be shaded to be safe.)

If the integer argument to RIMACH or DIMACH is out of range. the error handling facility
used in PORT, which is discussed in the next section, is called to deliver an appropriateé message
and terminate the run. In IIMACH. the message is output directly to avoid the possibility of a
recursive call from the error handler.

The constants provided in the function subprograms cover logical unit numbers, and ceruin
properties of integer, floating-point, and character-string quantities. Carz has been taken to dis-
tinguish the space configuration used by integers from that used by singie-precision (REAL)
quantities: for some computers this distinction is required since the concept of a computer
‘word' for both types is not valid. (For instance. on the CDC 6000 Series. both integers and
reals are stored in 60-bit words, vet integers have 48 bits of magnitude and 1 sign bit.) The

1-7

model of a computer we represent is based entirely on Fortran fypes. and the values we provide
completely specify the model. I[n fact. some redundancy has been included for purposes dis-
cussed a little later.

The following are specified:

Logical unit numbers

the standard input unit

the standard output unit

the standard punch unit

the standard error message unit

Integer and character storage

the number of bits per INTEGER storage unit
the number of characters per INTEGER storage unit

Integer variables

Let the values for integer variables be written in the s-digit, basz-a form:

= (x,_@° T x,_-at T+ - - +xatxy)

where 0 € x; < gafori=0,...,s~-1.

Then we specify,

the base. a
the maximum number of digits, s
the largest integer, a*—1.

Aithough the quantity, a®—1, can easily be computed from s. and the base, a. it is pro-
vided because a naive evaluation of the formula would cause overflow on most machines.
(Storage of integers as magnitude and sign or in a complement notation is not specified
since PORT subprograms must be independent of the storage mode.)

Floating-point variables

If floating-point numbers are written in the r-digit, base-b form:

X1 X X,
Th(—+—+ =)

b - b¢
where 0 S ; < bfori=1,...,t, 0< x;and e,, € e € e, then for a particular
machine, we choose values for the parameters, . €y, and e.,,, such that all numbers
expressible in this form are representabie by the hardware and usable from Fortran. Note
that the formula is symmetrical under negation but not reciprocation. On some machines
a small portion of the range of permissible numbers may be excluded. Also, for 2's com-
plement machines care must be takan in assigning the values: see page 10.

Then we specify,

the base, b. for both single and doubie precision
the number. ¢, of base-b digits

In order to accommodate machines (such as the CDC 6000 Series) with the A-point on
the right we must concede the possibility thai the magnitude of e, may be substantially
smaller than e, Thus, for single-precision floating-point we specify.

the minimum exponent, €.,
the maximum exponent, e,

For double precision. b remains the same, but f. e, and en,. are replaced by T, £,
and £, Normally, we have E., < e, and £, 2 eq,. and T>r However, in
machines such as the CDC 6000 Series or the PDP-10 KA Processor. where doubie preci-
sion is implemented by software simulation, small double-precision floating-point numbers
carry only ¢ base-b significant digits. In such cases, we take E.,, to be the exponent or
the smallest number with T base-& significant digits, and it may be that, Eq.q > €min-

The 16 values given above are all integers and are obtained by invoking the function [IMACH
with the appropriate argument. The floating-point single-precision and doubla-precision quanti-
ties provided by the functions RIMACH and DIMACH can be derived from the given integer
quantities, but are provided for efficiency and convenience.

The single-precision floating-point quantities providad in RIMACH are,

.. . e, —!
the smallest positive magnitude, b ™"

the largest magnitude, 5°™*(1 —b 79

the smallest relative spacing between values, 4 ™'
the largest relative spacing between values, b' ™’
the logarithm of the base b, log;yb

The relative spacing is | (y —x)/x |, when xand y are successive floating-point numbers.

Equivalent values for the double-precision floating-point quantities are provided by DIMACH.
with €4, €, and rreplaced by E£,.q. Emy.. and T.

A note on decimal input-output

In some appiications. particularly input-output, it is often useful to know the basic reiationships
between the internal representation of numbers and an external decimal representation. Some
of the simpler relationships are summarized below. More detail can be found in Matula (1968).

For output, one usually wants to know how much space to allow for the decimal representation
of an internal numboer. In the case of integers, the number s’ of decimal places that are nesded
is given by

s = Is logmal ,

where g and s are defined above. and where [x] denotes the smailest integer not less than x.

For floating-point, the situation is slightly more complex. If the extarnal representation is of
the form m’ 10¢ with 10 ™! € m’ < 10, then (in singie precision) the minimum and maximum
values of e’are:

€ nin = l(emm_l)mglob] +1

€ = [e‘YU\ lOgh)b] .

Here. | x| denotes the largest integer not 2xczeding x.

1-9

The number of decimal places required for the decimal exponent is therefore

[log o(max(e’ ., |e'mm!))]

To determine the number of decimal places to allow for m, we observe that integers in the
range 0 to b’ — 1 can be represented exactly in single-precision floating-point. If these are to
be represented exactly on output, then the number ¢ of decimal places required is

= [f logmb] .

Relations similar to those given above hold for double-precision.

It should be noted that a decimal floating-point system carrying ¢’ significant digits has a smal-
lest relative spacing which is less than or equal to the smallest relative spacing of our assumed
internal representation.

For input, one usually wants to know the approximate ranges of decimal numbers which can be
represented in the machine. For instance, all integers of s” decimal digits, where

s" = ls logma]
can be representad internally. Of course, the actual range may be larger. but a more compli-

cated test would be needed.
All single-precision floating-point numbers of the form m” 10¢ where 10~' € m” < 10 and

(emin —l)logmb]-:-l £ ¢ < [em“ logmbl
can be approximated in the machine. Similar relations hold for double-precision.

Programming using the machine-constant functions

In most cases it is desirable 10 avoid repeated calls in a single subprogram to the functions
described above. The obvious technique is to retrieve the needed values at the outset, but
there are cases where substantial overhead may be incurred, even by this technique. One way
to eliminate multiple calls is to use a carefully constructed ‘first-time’ switch.

For example, to retrieve IIMACH(9), the largest integer. on first entry (o a subprogram. the
following coding can be used:

DATA IMAX / 0/

IF (IMAX .EQ. 0) IMAX = IIMACH(9)

To ensure portability it is essential that all values obtained in this way be initialized in a DATA
statement. If not, some operating systems (notably Burroughs) will not preserve the values
from one subroutine call to the next,

1-10

Use of definition redundancy to check installation

Aside from convenience in programming. the redundancy in the definitions of the machine
constants allows a particular installation of the PORT library to be checked for consistency.
After the library has been compiled, a special checking subprogram is called to verify that the
integer and floating-point constants satisfy the following conditions:

(1) 1T

(2) E.i 2 emu

(3) Emin € emin

(4) the largest integer agrees with & — |

(5) the floating-point constants agree with those computed from the integer constants

(6) the largest and smallest floating-point values are closed under negation, i.2.:
~(=x)=x

If a discrepancy is found, a warning message and the vaiues of the quantities involved are
printed. Condition (3) may fail on some machinas, even though the specifications are correct:
in this case the warning massage shouid be ignored. For 2's compiement machines. if ey, has
been set too small, condition (6) will fail, since the negative of the smallest number wili
underflow. Note that some of the integer definitions must be used by the checking routine to
determine the output unit for the error messages and the correct formats for printing.

3. The PORT Library

The proof of the porting. one might say, is in the using. Libraries. to be effective, musi take
into account the motivations of the users. A user is grateful if the programs are easy 1o use
and well documented: protection against errors is particularly appreciatad.

To gain user acceptance, PORT provides: (1) simplified calling sequences. (2) careful error-
handling, (3) dynamic storage allocation, and (4) brief but compliete documentation, all impte-
mented in a portable way. The first three of these four topics are discussed below.

3.1. Calling sequences and modular structure

PORT tis structured like an onion. The programs most visibie, on the outer layer of the library,
are the simpiest. The calls to these top-level routines need few parameters and are documented
in brief (iypicaily one-page) reference sheets. The top-level routines, in turn. can set default
values and call lower level routines containing more parameters. A routine at the second level
often is documented and available to the more sophisticated user. who may wish. for example.
to influence the details of the step-size monitoring in ditferential equation solution. Then a
second level subprogram may call on a third. perhaps undocumented,. 20-parametar, subpro-
gram.

At the innermost level, the picture simpiifies again to a more primitive state. PORT includes
small subprograms for complex double-precision arithmetic. and for the trigonometric {functions
that are not ANSI Fortran: also the library probebly will incorporate some version of the basic
linear aigebra modules (inner products, norms, ¢tc.) proposed by Hanson. Krogh. and Lawson
(1973), tsee Lawson (1973)). Further routines include those for initializing a vector. for mov-
ing arrays and/or changing their tvpe, for determining if a vector is (strictly) monotone. for
finding the ceiling or floor of a floating-point quantity, and for doing internal sorting. All the
subprograms are of course implemented portabiy and can be cailed directly by the user. or by

other routines in the library.

Calling sequences in PORT are simplified in another sense, by not including parameters for error
indication or for scratch storage. The centralized error-handling procedure of the library elim-
inates the need for error flags, while its dynamic storage allocation capability eliminates scratch
storage arrays in the calls to outer level subprograms.

3.2. Centralized error handling

In most libraries, a program which can reach an error state includes in its calling sequence a
parameter to indicate. on return from the subprogram, whether an error has occurred. The
user is responsible for testing the error flag and taking the appropriate action, but, as we all
know, the user frequently assumes that the program ‘*will work this time."" A safer, but more
extreme approach. is to eliminate the error flag, and. if an error occurs, simply print an error
message from within the subprogram and terminate the run.

The picture is really more complicated, because the proper treatment of an error may depend
on the degree of severity of the error, the sophistication of the user. and other matters not
known to the subprogram in which the error is detected. A rzcent paper by Goodenough
(1975) discusses the general matter of ‘exception handling’ in a very thorough manner. Vari-
ous approaches to error-handling have been taken in currently availabie mathematical libraries:

The severity of the error is taken into account in the EISPACK package which uses the sign of
the error flag to distinguish ‘path-terminating’ (fatal) errors, from those which indicate that
some of the computation can be salvaged, even though trouble has occurred {Smith er al.
(1976)]. Some libraries [IBM (1971), IMSL (1975)] define in greater detail the degree of
severity of an error: from ‘warning’, through “an error for which the subroutine has taken a
default action’, to ‘dangerous but non-terminating error’, and finally ‘terminating error’.

For the unsophisticated user, the safest action in all cases is to print a message and stop. The
experienced user, on the other hand. usually wants to control the error-handling o some
extent, and various techniques for doing so are provided in the different libraries.

The NAG (Mk 2, 1973) library, in the calling sequence to the error routine, provides a para-
meter, IFAIL, which can be set by the calling program to control the action: if [FAIL is input
as 0 C(hard fail’), an error message is printed and execution terminated: if the input value is
set to 1 (*soft fail’), the error routine assigns the current error number to IFAIL, now used as
the output parameter, and returns o continue execution.

FUNPACK [Cody (1975)] provides the experienced user with a mechanism for accessing error
patterns in great detail. Within the library, tables are kept of the frequency of occurrence of
each error; the user can monitor a particular arror. and allow or suppress the printing of zrror
messages. Continuation or termination of the run, at any point, can also be controlled.

The SANDIA library (Jones and Bailey (1976)] uses a technique which is. to some extent,
similar to the one used in PORT and described below. In their library a set of error routines is
provided that allow the user to override the default message printing and termination. One
routine is used to set the flags controlling the printing and/or termination. and another routine
can be used to access the current setting of the flags. The principle error routine, ERRCHK.
does the actual error handling as specified by the current flag settings. A fourth routine is pro-
vided for one-time-only printing of an error message. The four routines communicate with
each other via a COMMON biock. and are implemented in a machine-independent version.

Error handling in PORT

In PORT, only two types of error can occur: ‘fatal’ and ‘recoverable’. and two tvpes of user are
catered to. For the unwary user either type of error causes an error message o be printed and
the run to be terminated: in the case of a fatal error. a call is made to a dump routine. (The
dump routine itself is a local option: at Bell Labs Murray Hill a symbolic dump is providad.
which lists the names of the variables and their values when the dump was called. and prints

1-12

out the list of active subprograms, [Hall (1975)].) For the user who wishes to recover from an
error and to gain control over the error-handling process, a ‘recovery mode’ is provided. At
any point in a run the user can enter the recovery mode. and, while in this mode. can

-~ determine whether an error has occurred, and. if so. obtain the error number
— print any current error meassage
— turn off the error state

— leave the recovery mode

Only recoverable errors can be controlled by the user: the fatal errors represent unrecoverable
situations or user blunders such as setting an input parameter {0 an impossible value.

When an error is detected in a PORT subprogram, a cail is made to the error-handling routine,
SETERR. (Of course a user may also call SETERR in a main program. or user-written subpro-
gram.) The calling sequence is:

CALL SETERR(MESSG. NMESSG. NERR. IOPT)

where

MESSG

a Hollerith message
NMESSG = the number of characters in MESSG
NERR = the error number

[OPT =] 1o specify that the error is recoverable
= 2, to specify that the arror is fatal

Unless recovery mode is in effect, SETERR prints an srror message and terminates execution.

For the casual user of PORT, the possibility of regaining control after an error will probably not
be of interest. The message printed out if an error occurs will usually indicate where a change
or correction need be made. For the user who does wish to racover from certain errors and
continue the computation. there are, as noted above, subprograms permitting this flexibility.
Part 2 of this report provides further discussion of :he programs in the error-handling packaga.

3.3. Dynamic storage allocation using a stack

Dynamic storage allocation in programming systems (as opposed to memory management in
operating systems) is most often found in list processing applications such as LISP. Fortran,
which has no mechanism for recursion, is not a natural setting for dvnamic storage manage-
ment, aithough some work has been done. Barron (1973) reports the work of Ayers (1963) on
implementing a set of stack-handling routines in Fortran. Jensen (1974) describes some rou-
tines for dynamically providing portions of a storage pool to an application program. He has
developed a ‘modular storage management systam’ which uses data structures in a hierarchy of
records, groups of records, and groups of groups, so that the scheme is more structured than is
a simple stack. Other libraries of mathematical subprograms do contain sets of programs o
implement dvnamic storage-handling, but the only library we nappen to know, besides PORT.
which is compietely built around a dynamic storage scheme is STATLIB [Bresford. Relles er al.
(1969)].

1-15

The PORT library has integrated a dynamic storage allocator into the basic library structure. We
consider this method for providing scratch space greatly superior 1o other methods: the histori-
cal approach of compiling workspace directly into individual subprograms is clearly inefficient.
and the other general method of passing names of scratch arrays puts a considerable naming
and dimensioning burden on the user. We have found that use of dynamic storage allocation in
PORT leads to more clearly structured programs. cleaner calling sequences, improved memory
utilization, and better error detection. The allocator is implemented as a package of simple
portable Fortran subprograms which manipulate a dynamic storage stack.

In general. the casual PORT user need not be concerned about the operation. or aven the
existence of the dynamic storage stack; the fact that the PORT subprograms are using the stack
is invisible. However, for sirict conformance with the ANSI Standard. and particularly when
overlays are being used. a declaration of the stack in the main program should be included, (cf.
the discussion of nonstandard usages in Appendix A.)

Below we discuss the capabilities inciuded in PORT's storage-allocation package. and give exam-
ples of its use. Appendix B discusses the implementation of the storage stack. and Part 2 of the
report contains the subprograms for it.

The stack: allocation and de-allocation

Allocation and de-allocation of space on the stack is carried out through the use of explicit sub-
program calls in the subprograms of the PORT library. By the nature of a stack. allocations and
de-allocations are carried out on a last-in first-out basis. In order to make the stack invisible to
most users of library programs, the package is self-initializing and contains a default stack size
which will hold approximately 500 DOUBLE PRECISION data items. If desired, larger
amounts of stack space can be reserved for a particular run.

The stack resides in the labeled COMMON region CSTAK. Any subroutine that uses space
allocated in the stack must inciude the following declarations:

COMMON /CSTAK/DSTAK(500)
DOUBLE PRECISION DSTAK

These ensure that the length and type of the stack are properly and consistently declared in ail
subprograms. including those which use the allocator and are loaded from libraries. Failure to
use these declarations could lead to unexpected difficulties during loading (or link-editing). If
needed, most Fortran environments permit a larger stack to be declared in the main program
(see below), without adjusting these other declarations to match.

To provide LOGICAL, INTEGER. REAL and COMPLEX aliases for the stack, the following
declarations appear in many PORT subprograms.

LOGICAL LSTAK(1000)
INTEGER ISTAK(1000)
REAL RSTAK(1000)
COMPLEX CMSTAK(300)

EQUIVALENCE (DSTAK(1).LSTAK(1))
EQUIVALENCE (DSTAK(1).ISTAK(D))
EQUIVALENCE (DSTAK(1),RSTAK(1))
EQUIVALENCE (DSTAK(1).CMSTAKI(1))

The dimensions arez chosen for the ANSI standard situation with LOGICAL. REAL. and
INTEGER variables taking half the space of DOUBLE PRECISION or COMPLEX. If the rela-
tive lengths are nonstandard (see Section 2.2). there is one stack-management subprogram that

must be modified. (See Part 2 of the report.)

PORT contains two basic subprograms, ISTKGT and ISTKRL, for getting and releasing stack
space, respectively. The function for getting stack space is

INTEGER FUNCTION ISTKGT(NITEMS.ITYPE)

where NITEMS is the number of items of type ITYPE to be allocated. The values of ITYPE
are as follows:

ITYPE | ltem Type
1 LOGICAL
2 INTEGER
3 REAL
4 DOUBLE PRECISION
5 COMPLEX

For example, the statement
[= ISTKGT(N,2)
returns an index I so that the locations
ISTAK(D , ..., ISTAK(I+N-=1)
form the space allocated for N INTEGER items. Similarly, the statement
I = ISTKGT(N.3)
returns an index [so that the locations
RSTAK(I) , ..., RSTAK(I+N-1)
form the space allocated for N REAL items. Further, the statement
[= ISTKGT(N,4)
returns an index [so that the locations
DSTAK(D DSTAK(I+N-1)
form the space allocated for N DOUBLE PRECISION items. Space may be obtainad for LOGI-

CAL or COMPLEX items in a similar fashion. Note that the space allocated is not initialized to
any particular value.

Since no assumption is made about the relaiive amounts of storage allocuted by the Fortran sys-
tem to the various data tvpes, it is important that allocations not be divided into sub-allocations
for data of different types. Instead. ISTKGT should be invoked separately to obtain space for
each of the different types being used.

1-15

The subroutine for releasing space is
SUBROUTINE ISTKRL(K)

which simply releases the space obtained by the last K ISTKGT invocations.

As a simple example of the use of these two subprograms, consider a ‘little black box’ sub-
routine LBB(A.N) which returns something in a REAL vector A of length N and requires two
scratch arrays to do so: an INTEGER array of length 2N and @ REAL array of length N. LBB
would look roughly as follows:

SUBROUTINE LBB(A,N)
COMMON /CSTAK/DSTAK(300)
DOUBLE PRECISION DSTAK
INTEGER ISTAK(1000)

REAL A(l)
REAL RSTAK(1000)

EQUIVALENCE (DSTAKI(1).ISTAK(1))
EQUIVALENCE (DSTAK(1).RSTAK(1))

[T = ISTKGT(2*N,2)
IR = ISTKGT(N,3)

| code referring to RSTAK(IR +n) and ISTAK(II+m)
probably ending with code to store the stuff
from the real scratch storage into array A |}

CALL ISTKRL(2)

RETURN
END

1-16

To avoid messy (and possibly non-standard) subscript calculations, it is often more convenient
to pass the arguments and the allocated scratch space down one more level to a subprogram
which does the real work. This not only makes programs more readable and easier to code, but
often more efficient t00. Thus the above can be coded as a ‘shell,” LBB. calling on a "work-
horse’ subprogram, L1BB. as follows:

SUBROUTINE LBB(A,N)

C
COMMON /CSTAK/DSTAK(300)
C
DOUBLE PRECISION DSTAK
INTEGER ISTAK(1000)
REAL A(D)
REAL RSTAK(1000)
C
EQUIVALENCE (DSTAK({1) ISTAK(1))
EQUIVALENCE (DSTAKI(1) . RSTAK(1))
C
Il = ISTKGT(2*N.2)
IR = ISTKGT(N,3)
C
CALL LIBB(A.ISTAK(ID . RSTAK(IR),N)
C
CALL ISTKRL(2)
RETURN
END

Initializing the stack size

As previously mentioned. the subprograms in the zllocation package are all self-initializing so
that a user with small requirements nead not aven know of their a2xistence. However, there
will be applications which require a larger stack than that providad by dafault. In this case,
declarations for the stack and an explicit call to an initialization subprogram must be made in
the main program. The initialization subprogram is

SUBROUTINE ISTKIN(NITEMS.ITYPE)

where NITEMS is the number of items of type ITYPE set aside for the stack.

For 2xample, to set up a larger stack with 1000 DOUBLE PRECISION items. the foilowing
declarations and subroutine call would be put in the main program.

COMMON /CSTAK/DSTAK(1000)
DOUBLE PRECISION DSTAK

CALL ISTKIN(1000,4)

(Since the library programs are compiled with a stack of 300 DOUBLE PRECISION items. this
is a non-standard usage, but one supported by most Fortran environments — sé2 Appendix
Al

Stack status: query and modification

By design. it is considered a fatal error to attempt to allocate more space than is actually avail-
able. The error could have been made recoverable. but it was felt that this would unnecessarily
complicate both implementation and use. For those situations when it is desirable to query how
much stack remains. the function

INTEGER FUNCTION ISTKQU(TYPE)

can be used. ISTKQU returns the number of items of type [TYPE remaining to be allocated in
a single invocation of ISTKGT. (As noted in Appendix B, there is a small amount of space
overhead associated with each allocation. If the stack is effectively full. ISTKQU will return 0).

The statements

NLEFT = ISTKQU(3)
INDEX = ISTKGT(NLEFT,3)

allocate ill remaining space as a single block of REAL items.

In some applications it may be necessary to modify the size of the most recent allocation. This
can be accomplished with the subprogram

INTEGER FUNCTION ISTKMD(NITEMS)

which will modify the length of the last allocation 1o NITEMS items and, in a manner similar to
ISTKGT, return the index of the first item of that allocation. If the last ailocation is truncated,
only the first NITEMS items are preserved. If the last allocation is extended, existing informa-
tion is preserved but the added space is not initialized.

As an example of the use of ISTKQU and ISTKMD, the following program fragment reads an
indeterminate number of positive REALs into the stack. For convenience, we assume that a
negative data item marks the end of the data.

C
C FIND OUT HOW MUCH STACK SPACE IS LEFT
C AND ALLOCATEIT ALL.

C
NLEFT = ISTKQU(3)
[= ISTKGT(NLEFT.3)
C
C INITIALIZE COUNT OF ITEMS READ SO FAR.
C
NITEMS =0
C
C READ AN ITEM INTO THE STACK AND TEST FOR END-OF-DATA.
C

10 IF (NITEMS .EQ. NLEFT) GO TO error
READ (IRUNIT,100) RSTAK(D)

100 FORMAT (F10.6)

C
IF (RSTAK(D) .LT. 0 GO TO 20

C
NITEMS = NITEMS + 1

1-18

I=1+1
GO TO 10
C
C HERE WHEN ALL DATA READ.
C CHECK THAT AT LEAST ONE ITEM WAS READ,
C AND., IF SO, TRUNCATE THE ALLOCATION.
C
20 IF(NITEMS .EQ. 0) GO TO elswhere
[= ISTKMD(NITEMS)
C
C NOW THE ITEMS ARE IN LOCATIONS
C RSTAK(D RSTAK(I+NITEMS—1)
C

The function
INTEGER FUNCTION ISTKST(N)

allows one to obtain certain statistics on the storage allocator. All quantities are measurad in
terms of INTEGER items. Because there is no fixed relation assumed about the relative sizes
of the various data types. the values returned should only be used for observing the status of
the stack. The values returned by ISTKST are determined by the argument N as follows:

Statistic Returnad

N j
1 | Number of outstanding allocations |
2 | Current active length

3

4

Maximum active length achieved
Maximum active length permitted |

To determine the exact number of INTEGER items requirad for the stack. one might inciude
the following statements at the end of the main program.

IUSED = ISTKST(3)
WRITE(IWUNIT.100) ITUSED
100 FORMAT(IX,13HSTACK USED = .16)

More detail on the Fortran implementation of the stack is given in Appendix B.

3.4. Mathematical programs in PORT

The programs in the PORT library are grouped into twelve chapter areus: Approximation. Com-
puter Arithmetic. Differential Equations. Linear Algebra and Eigensystems. Mathamaucal Pro-
gramming, Optimization. Probability and Statistics, Quadrature, Roois. Speciai Functions.
Transtorms. and Ltility. Some of the routines, such as the Jenkins-Traub (1972.1973) polvno-
mial root finder, Singieton’s (1969) Mixed Radix Fast Fourier Transform. ind thres programs

1-19

from EISPACK have been adapted from versions appearing in the open literature. All of these
have been revised to fit PORT's portability, error-handling, and dynamic storage requirements.
The bulk of the routines have been developed at Beil Labs. These include Blue's (1975) qua-
drature routine. QUAD. which can integrate ‘noisy’ integrands or integrands with a singularity,
and Schryer’s (1973) differential equation solver, ODES. which is built around an efficient and
robust extrapolation algorithm. Warner and Eldredge (1976) have provided a program,
BURAM, for finding the best uniform rational approximation on a mesh using the differential
correction algorithm. This last group of programs are included in theé second edition of PORT
which is now out. Also included now are programs for finding the roots of a set of noniinear
equations [Blue (1976)], and a random number generator, implemented to be portable and to
provide the same random deviates on any computer with at least 16 bits [Gross 1976]. (The
latter uses Marsaglia's mixed congruential-Tausworthe shift method [Marsaglia and
Ananthanaravanan (1973)].) An extensive spline approximation, interpolation and integration
package, has been added to the library, and there are many new utility routines, including sort-
ing and various vector operations.

PORT now contains 346 subprograms. The library is not as large as that sounds: separatle
single-precision and double-precision versions of the subprograms (when appropriate) are each
counted. There are 125 documented programs — one piece of documentation applies to a
given single/double-precision pair. Many of the lower level routines which are not documented
in the current edition will be written up for future editions. The tape contains some 40,000
lines of Fortran, including comment cards.

4. Summary

The PORT library project has been under way for three vears; the library is now installed on vari-
ous classes of computers and users have found it 1o provide a solid foundation for program
development. The emphasis, throughout the development of the library. has bean put on por-
tability. structure, and 2ase of use. Above, we have surveyed some ot the techniques used to
achieve these ends. In summary, we make the library portable by using a subset of ANSI For-
tran, and by using tunction calls to obtain machine-dependent quantities. We have structured
the library around a centralized error-handling procedure, and we have included dynamic
storage allocation, implemented in a portable manner. These approaches, together with simple
briefl user reference sheets, have helped us achieve user icceptance at the various installation
sites. -

Acknowledgments

Members of both the Computing Science Research Center and the Computing Technology
Center at Beil Laboratories have contributed in substantial ways to the development of the PORT
library. The authors wish to express their appreciation for this support. In particular, W. Sun-
ley Brown is 1o be thankad for his many vaiuable suggastions on the direction the library should
take.

1-20

Appendix A

Nonstandard Fortran in PORT

PORT makes two assumptions on its host Fortran environment that are outside of the ANSI
standard. These are that there is no runtime subscript range checking, and that variables initial-
ized in DATA statements retain their most recently assigned values. These transgressions and
their effect on the library are the subject of this appendix.

The assumption on subscript ranges allows dummy arrays in subroutines to be given a last sub-
script dimension of 1 under the assumption that a larger value can actually be used. The exten-
sion of the assumption to cover arrays in COMMON means that the stack can be initialized in
the main program to a size larger than its default size of 300 double-precision locations. even
though the library has been compiled using the default size. Similarly, if the relative lengths of
different data types are nonstandard (see Section 2.2), the library need not be recompiled 10
reflect the actual ratios.

The second assumption, that a variable which is initialized by a DATA statement in a subpro-
gram, and then changed within the subprogram, keeps the latest value from one invocation of
the subprogram to the next, is used in PORT's error-handling and stack allocation packages. In
the error handler, a DATA variable of this type is used to hold the error number of the last
error that has occurred, another is used for the current mode (recovery or nonrecovery), and
another to store the error message pertaining to the last error, if any. In the implementation of
the storage stack. such a DATA variable is used as a flag to specify whether the stack has been
intitialized, either by the user, or, in the usual fashion, by the stack subprograms.

These various slippages from standard Fortran usage could cause trouble if overlays are being
used. When a user is running a large program in a smatler space using overlays, care should be
taken to keep the error-handling and stack-atlocation subprograms in the main memory link in
order that the vaiues of the DATA variables be retained. This is probably a good idea anyhow,
from the standpoint of efficiency, and, for the same reason. the three small machine-constant
functions should also be kept resident.

Finally, if a user has had to enlarge the storage stack from its default value, or if overiays are
being used, the stack should be declared within the main program and the call to the stack ini-
tializing routine made in the main program. This will serve to keep the stack in the main link.

1-21

Appendix B

PORT storage stack — implementation notes

Each allocation on PORT’'s dynamic storage stack consists of four parts: initial padding, allocated
space, final padding and control information. The amount of space allocated to the initial padding
is less than the space occupied by one item of the type being allocated. The final padding is
less than the space occupied by an integer. The padding simply accounts for the differences in
the relative positions of items of different type in the COMMON block CSTAK. The control
information takes two integers the first of which contains ITYPE, the type of the allocation.
The second word contains the index (in ISTAK) of the second word of the control information
associated with the previous allocation. If there is no previous allocation, this contains the
space reserved for internal bookkeeping, currently 10 integer locations.

In these 10 locations in the stack, information is stored about the number of allocations
currently outstanding, the current active length of the stack, the maximum length achieved so
far during the run, etc. Also stored here are 5 integers giving the amount of space allocated to
each of the different data types. Since these numbers are used solely for computing subscripts.
the unit of measurement is arbitrary and may be words, bytes, bits or whatever is convenient.
By default, the ANSI standard ‘storage unit’ is used. For mini-computer Fortran systems which
do not allocate storage as prescribed by the Fortran Standard, the subprogram (I0TKO00) that
initializes these 3 locations should be modified as appropriate. This subprogram and the others
in the stack allocation package are given in Part 2 of the report.

Fig. 1 shows a schematic of the dynamic storage stack with two allocations outstanding, the first
for 5 integers. and the second for 3 double-precision values. The cross-hatching after the first
allocation represents the padding needed to align the doubie-precision quantities on the proper
boundary.

At each call to the allocator, the consistency of the stack and the control information stored in
it is checked. If an inconsistency is found, SETERR is called to deliver an appropriate message
and terminate the run.

Nonstandard Fortran usages in the impiementation of the stack are discussed in Appendix A
above.

O 00 ~1 O W & WtV —

N S N I R e e e e B e ey
N*—‘O\OOO\IO\UIJAMN'—‘O

Stack

Bookkeeping

10

[111111111111111

17

first allocation

type-code (INTEGER)
back-pointer

padding

second allocation

type-code (DOUBLE PRECISION)

back-pointer

Figure 1. Dynamic Storage Stack

References

Aird, T. J., Battiste. E. L., Bosten, N. E., Darilek, H. L., and Gregory. W. C. (1974). Name
standardization and value specification for machine dependent constants, SIGNUM
Newslerter 9. Number 4, 11-14.

Aird, T. J., Battiste, E. L., and Gregory, W. C. (1973). Portability of mathematical software
coded in FORTRAN. (private communication).

Ayers, J. A. (1963). Recursive programming in Fortran [I. CACM 6, 667-668.

Barron, D. W. (1973). Recursive Techniques in Programming, 2nd Fd. American Elsevier, N.Y.,
42-48,

Battiste, E. L. (1971). The production of mathematical software for a mass audience, in Rice
(1971a). 121-130.

Blue. J. L. (1975). Automatic numerical quadrature — DQUAD, Computing Science Techni-
cal Report Number 25, Bell Laboratories. Murray Hill, N. 1.

Blue, J. L. (1976). Soiving systems of nonlinear squations, Computing Science Technical
Report Number 30, Bell Laboratories, Murray Hill. N. J.

Boyle, J. M., Cody, W. J., Cowell, W. R., Garbow, B. S., Ikebe, Y., Moler, C. B., and Smith,
B. T. (1972). NATS. a collaborative effort to certify and disseminate mathematical
software. Proc. 1972 ACM Annual Conf., Vol. 11, Assoc. for Computing Mach.. New York,
630-633.

Bovle, J. M., and Dritz. K. D. (1974). An automated programming system to facilitate the
development of quality mathematical software. Information Processing 74 (Proc. IFIP 74), 3,
North-Holland, Amsterdam, 542-346.

Bresford, W. M., Relles, D. A.. eral. (1969). STATLIB, Bell Latoratories, Hoimdel, N. J.

Brown, W. S. (1970). Software portability, in Buxton. J. N., and Randell, B.(Eds.), Reporr of
the 1969 NATO Conference on Software Engineering Techniques. NATO Science Commitiee,
80-84.

Brown. W. S. (1977), A realistic model of floating-point computation, in Rice (1977). pp. -

Cody. W. J. (1973). The FUNPACK package of special function subroutines. 4CM Trans.
Marh. Software 1, 13-23.

Dickinson, A. W., Herbert. V. P., Pauis. A. C.. and Rosen, E. M. (1971). The development
and maintenance of a tachnical subprogram library, in Rice {1971a), 141-151.

Ford. B. (1976). Machine characteristics and their parameterisation in numerical software,
(private communication).

Ford. B.. and Sayers. D. (1976). Developing a singiz aumerical algorithms library {or different
machine ranges, ACM Trans. Marth. Software 2. 113-131.

R -2

Ford, B., and Smith, B. T. (1975). Transportable mathematical software: a substitute for port-
able mathematical software, I[FIP Working Group 2.5 (on Numerical Software), position
paper.

Gentlemen, W. M., and Marovich, S. B. (1974). More on algorithms that reveal properties of
floating-point arithmetic units, CACM 17, 276-277.

Gentleman, W. M., and Traub, J. F. (1968). The Bell Laboratories numerical mathematics
program library project, Proc. 1968 ACM 23rd National Conference, 485-490.

George, J. E. (1975). Algorithms to reveal the representation of characters, integers, and
floating-point numbers, ACM Trans. Math. Software 1. 210-216.

Goodenough, J. B. (1975). Exception handling: issues and a proposed notation, CACM 18,
683-696.

Gross, A. (1976). Portable random number generation. Internal Bell Laboratories report.

Hague, S. J., and Ford, B. (1976). Portability — prediction, and correction, Software Practice
and Experience 6, 61-69,

Hall. A. D., (1975). FDS: a Fortran debugging system. Computing Science Technical Report
Number 29, Bell Laboratories, Murray Hill, N. J.

Hanson, R. J., Krogh, F. T., and Lawson. C. L. (1973). A proposal for standard lin2ar algebra
subprograms, Technical Memorandum 33-660, Jet Propulsion Laboratory, California Insti-
tute of Technology.

Hopper. M. J. (1973). Harwell Subroutine Library, A Catalogue of Subroutines, Theoreatical Phy-
sics Division. U.K.A.E.A. Research Group, Atomic Energy Research Establishment.
HARWELL, England.

IBM. [BM System/360 and System/370 Subroutine Library - Mathematics User's Guide, First Edi-
tion, November 1971, IBM Germany .

[FIP Working Group on Numerical Program Libraries. SIGNUM Newsletter: Vol. 7, Number 3.
October 1972, pp.10-11: Vol. 9, Number 3 July 1974, pp.3-4: Vol. 9. Number 4, October
1974, pp.3-4. Vol. 10, Number 2/3. Novembe: 1973, pp.16.25.

IMSL, International Mathematical and Statistical Libraries, Inc., Library 2, Edition 3. 1975.
Sixth Floor, GNB Bldg., 7500 Bellaire Blvd., Houston. Texas 77036.

Jenkins, M. A.. and Traub, J. F. (1972). Zeros of a complex polynomial, Algorithm +419.
CACM 13, 97-99.

Jenkins, M. A., and Traub. J. F. (1975), Zzros of a real poivnomial. Algorithm 493. 4CVWf
Trans. Math. Software, 1, 178-189.

Jensen, P. S. (1974). Storage management of numerical processes, presented at Software I,
(abstract) 263.

Johnson. O. G. (1971). IMSL's ideas on subroutine library probiems, SIGNUM Newsierrer 6.
Numpbper 3, 10-12.

R-3

Jones, R. E.. and Bailey. C. B. (1976). Brief instructions for using MATHLIB (Version 6.0),
Sandia Laboratories, Albuquerque, NM 87115.

Krogh, F. T. (1974). A language to simplify maintenance of software which has many ver-
sions, Computing Memorandum No. 360, Jet Propulsion Laboratory. April 18, 1974.

Krogh, F. T., and Singletary. S. A. (1976). Specializer User’s Guide, (draft, private communi-
cation).

Lawson, C. L. (1975). Current status of the SIGNUM Basic Linear Algabra project. Comput-
ing Memorandum No. 378, Jet Propulsion Laboratory. California Institute of Technology.

Malcolm, M. A. (1972). Algorithms to reveal properties of f{loating-point arithmetic. CACM
15, 949-951.

Marsaglia, G., and Ananthanarayanan, K. (1973). Random number generator package -
*Super-Duper,” School of Computer Science, McGill University.

Matula, D. H. (1968). In-and-out conversions. Comm. ACM 11, 47-50.

NAG Reference Manual, Mark 2 (1973). NAG Centrai Office, Oxford University Computing
Laboratory, 13 Banbury Road, Oxford. OX2 6NN, England.

Newbery, A. C. R. (1971). The Boeing library and handbook of mathematical routines. in Rice
(1971a), 153-169.

Redish, K. A., and Ward, W. (1971). Environment enquiries for numerical analysis, SIGNUM
Newsletter 6, Number 1, 10-15.

Rice, J. R. (1971a). Mathematical Software, Academic Press. N. Y.

Rice, J. R. (1971b). The distribution and sources of mathematical software, in Rice (1971a),
13-25.

Rice, J. R. (Ed.) (1977). (Need to have title for Wisconsin Sofiware Book)

Ryder, B. G. (1974). The PFORT verifier. Sostware Practice and Experience 4, 359-377.

Schryer, N. L. (1975). A user’s guide to DODES. a double-precision ordinary differential
equation soiver, Computing Science Tachnical Report Number 33, Bell Laboratories, Mur-

ray Hill, N. J.

Singleton. R. C. (1969). An algorithm for computing the mixed radix Fast Fourier Transform.
IFEE Trans. on Audio and Electroacoustics, AU-17. 93-103.

Smith, B. T.. Bovle. J. M., Dongerra. J. J.. Garbow, B. S., Ikebe, Y.. Klema. V. C.. and Moler,
C. B. (1976). Marrix Eigensystem Routines — EISPACK Guide, 2nd Edition, Springer-
Verlag, New York.

Software II (1974). Informal proceedings of a conference held ar Purdue Universizy, May 29-31.

Waite. W. M. (1970). Building a mobile programming system, The Compurter Journaf 13, 18-
31.

R -4

Warner. D. D., and Eldredge. B. D. (1976). An implementation of the differential correction
algorithm, Computing Science Technical Report Number 48, Bell Laboratories. Murray
Hill, N.J.

Wilkes, M. V., Wheeler, D. J., and Gill, S. (1951). The Preparation of Programs for an Eiec-
tronic Digital Computer, Addison-Wesley, Reading, Mass.

USA Standard FORTRAN, USA Standards Institute. New York. N.Y. 1966.
Clarification of FORTRAN Standards - Initial Progress, CACM 12, (1969), 289-294.

Clarification of FORTRAN Standards - Second Report, CACM 14, (1971), 628-642.

Program Listings:

Machinze Constants
Error Handling

Stack Allocation

PORT Utilities: Description and Listings

¥Machine constants
Error handling
Stack allocation

Vachine-dependent constants
The first package contains three Fortran function subprograms which can be invokad to deter-
mine basic machine or operating system dependent constants. Values are provided in com-
mented DATA statements for the Burroughs 3700/6700/7700, the CDC 6000/7000 Series, the
Data General Eclipse. DEC PDP 10 (KA and KI processors), the DEC PDP 11, the Harris
$220. the Honeyweil 6000 Series, the IBM 360/370 Secries, the SEL Systems 83/86, the
UNIVAC 1100 Series, the XEROX SIGMA 3/7/9: others can be added. When the library is
moved to a new environment, only the appropriatz DATA statements in these thre2 subpro-
grams need to be activaiad by removing the C's from column 1.
The thres functions are

| IMACH. which delivers integar consiants,

RIMACH. which delivers single-precision floating-point (REAL) coastants, and

DIMACH, which delivers double-precision f{loating-point constants.

The f{unctions have a single integer argument indicating the particular constant desired. For
example, RIMACH(2) is the largest single-precision floating-poin: number on the host
machine, so the staiement

XMAX = RIMACH(2)
sets XMAX to this largest number.

The machine-dependsnt vaiues provided ars definzd in the initiai comment sections of the iist-
ings below. Details of constant specification and usage are described in Part 1 of the report.

INTEGER FUNCTION [IMACH(I)

170 UNIT NUMBSERS.
ITIMACH(L1} = THE STANDARD INPUT UNIT.
fiIMACH(2} = THE STANDARD OUTPUT UNIT.
f1ACH(3) = THE STANDARD PUNCH UNIT.

PIMACH({ 4) = THE STANDARD

RACR MESSAGE UNIT.

DO

WORDS.

L‘)C')(')C)OOOC)O(')O(’)(")OC')(’)Lﬁ(’)OOC)(')(‘)OO(‘)(‘)(’)ODOOOOC‘)OOOOOC‘)O(—)OOOOOOO

FIMACH(9)

I

I'IMACH(6)

INTEGERS.

ASSUME

SIGN (

WHERE 0

FIMACH(7)

I IMACH(8}

FIMACH(9)

I

FLOATING-POINT

ASSUME FLOATING-POINT NUMBERS ARE REPRISENTED

BASE-B8 FORM

SIGN (B=-g)-((X(1)/B) + ... + (X(T)/B""T)
WHERE 0 .LE. X({i) .LT. B FOR I=1,..., T
0 .LT. X(1), AND EMIN .LE. £ .LE. EMAX.

tIMACH(10) =

[)
1
[

THE NUMBER OF BIT

THE NUMBER OF CHA

INTEGERS ARE REPRESENTED

X(S-1}=a°(S
JLED XD
A. THE BASE.
S. THE NUMBER OF
A**S - 1.

NUMBERS.

3, THE BASE.

SINGLE-PRECISICON

FPIMACH(11)

FIMACH(12) =

PIMACH(13) =

T, THE NUMBER OF
EMIN, THE

EMAX, THE

DOUBLE-PRECISICON

PIMACH(11) =
FIMACH(IS) =

FIMACH(18)

TC ALTER
THE DESIRED
RIMOVING

(N

THE C

THIS FUNCTION

st

7. THE NUMBER OF

tMIN, THE SMALLES

TMAX, THE LARGEST
R

FOR A PA
TATZMEN
1

OF DATA S

FROM COLUMN A

AT

S PER

RACTERS PER

IN THE S-DIGIT.

1)+ L

BASE-A DIGITS.

THE LARGEST MAGNITUDE.

BASE-B DICITS.

T EXPONINT t.

EXPONENT &

EASE-3 DiGITS.

T EXPONENT T

EXPONENT L.
TICULAR IHYIRCNMENT.
TS SHOULD 3¢ ACTIVATED
LSO, THE VALUES 2F

[p9)

INTEGER STORAGE UNIT.

INTEGER STORAGE UNIT.

BASE-A FORM

+ X(1)Y*A + X(0})

IN THE T-DIGIT,

)

oMo Ne]

(e}

eNeEeNsEsNeoNsNoNoNsNeoNoNoNeoNeoNeoNRoNoNoNsNReNesNeoNeoNeoNeNeoNoNoReoNoNoNoN o Re R R e R R e R N R X e]

| IMACH (1)

INTEGER

EQUIVALENCE

I IMACH (4)

2-3

SHOULD BE CHECKED FOR CONSISTENCY
WITH THE LOCAL OPERATING SYSTEM.

MACHINE CONSTANTS FOR

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH (
IMACH (
I MACH (
IMACH (
IMACH (
IMACH(
IMACH (
IMACH(8)
IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)

{

(

1)
2)
3)
4)
3)
6)
7)

IMACH({15)
IMACH(16)

NN N N N N N NN NN NN NN NN N
~

MACHINE CONSTANTS

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH (
IMACH (
IMACH
IMACH
IMACH (
IMACH (
I MACH (
IMACH (
IMACH(S
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(1S)

00 ~1 O N 4= W N —
N e e et e e e e

T T N T O
O

MACHINE CONSTANTS

DATA
DATA
DATA

IMACH(
IMACH(
IMACH(

1)
z)
3}

/
/
/

~N N
OV LG WY N

~NN

(F%)

—
g BR ¥V)
DY N O WL AN % N T LN = O NN~

-
(@)
0

Fes
O W rR D O~ W

(s I #8)
(o8]
Lo}
NN N N N N S NN N NN NN N

13

-30

6
25

-50

75

FOR THE 3BURRCUGHS 6700/7700 SYSTEMS.

~3 O

-

S~

~

IMACH(16),0UTPUT

{(IMACH(4),0UTPUT)

THE BURRQUGHS 1700 SYSTEM.

S

TSN N N NN

FFFF /

SNSON N NN N N

THE BURRQUGHS 5700 SYSTEM.

~J
~4
~14
~
~4
~)
~
~
~
~J
~3
~
~

[>NeoNeNeoNe NN RSN NN N ReNeNeNeNeNe RSN At EsEsEsNoRoNoNoNeNoNesNeoNeoNeoNoNeoNeoNeoNe NN NeNeNeo oo ReNe Re e

(38
'
o

DATA IMACH(4) / 6 /
DATA IMACH(5) / 48 /
DATA IMACH(&) / 6 /
DATA IMACH({ 7) / 2/
CATA IMACH(8) / 39 /
DATA IMACH(9) / 00007777777377717 /
DATA IMACH(10) / g8 /
DATA IMACH(11) / 13/
DATA IMACH(12) / -350 /
DATA IMACH(13) /7 78 /
DATA IMACH(14) / 28 /
DATA IMACH(15) / -32734 /
DATA IMACH(16) / 32780 /

MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA IMACH(1) /
DATA IMACH(2) /
DATA IMACH(3) /
DATA IMACH(4) /
DATA IMACH(3) /
DATA IMACH(&) /
DATA IMACH(7) /
DATA IMACH(8) /
/
/
/
/
/
/
/
/

—

DATA IMACH(9)
DATA IMACH(10)
DATA IMACH(11)
OATA IMACH(12)
DATA IMACH(13)
DATA IMACH(14)
DATA IMACH(13)
DATA IMACH(18)

~
NN N N NN N M N NN NN NSNS N

~J
~d
~
~
~J
.t
~J
~
~J
~4
~
~3
~1
~
o]
~

s 2N
Q= 00 N OO0 MNOOCOO Oy N

-37
107

b
[IV

~ N D~
O~ O

MACHINE CONSTANTS FOR THE CRAY 1

DATA IMACH(1) / 100 /
DATA IMACH(2) / 191 7
DATA IMACH(2) 7/ 192 7
DATA IMACH(4) / 191 7
DATA IMACHC(3) / 54/
DATA IMACH(68) / g/
DATA IMACH(7) 7/ 2/
DATA IMACH(8) / 53 7
CATA IMACH(3)Y / 777777777777777777717713 7/
DATA IMACH({10) / 2/
ODATA IMACH(11) / 7 /
DATA IMACH(12) / -8132 /
DATA IMACH(13) 7/ 818G /
DATA IMACH(1d) / 35 7/
DATA IMACH(1Z) / -31%82 7/

OOOO(‘)OOO(‘)C‘)O(’)OOO(—J(')OOC‘)OOODOOOOOOOOOOOOOOGOOOOOOOOOOO

[2%)
W

DATA IMACH(18) / 8190 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE §/200

DATA [MACH(1) / 11/
DATA [IMACH(2) / 12 /
DATA IMACH(3) / 8 /
DATA IMACH(4) / 10 /
DATA IMACH(5) / 16 /
DATA IMACH(6) / 2/
DATA IMACH({ 7) / 2/
DATA IMACH(8) / 15 /
DATA IMACH(9) /32767 /
DATA IMACH(10) / 16 /
DATA IMACH(11l) / 6 /
DATA IMACH(12}) / -64 /
DATA IMACH(13) / 63 /
DATA IMACH(14) / 14 7
DATA IMACH(15) /7 -84 /
DATA IMACH(L15) / 63 /

MACHINE CONSTANTS FOR THE HARRIS SLASH 5 AND SLASH 7

DATA [IMACH(1) / 5/
DATA IMACH(2) / 5 /
DATA [IMACH(3) / 0/
DATA IMACH(4) / g /
DATA [IMACH(5) / 24 /
DATA IMACH(8) / 37/
DATA IMACH(7) / 2/
DATA IMACH(8) / 23 /
DATA IMACH(9) / 8388507 /
DATA IMACH(10) / 2/
DATA IMACH(1Ll) / 23/
DATA IMACH(12) / -127 /
DATA IMACH(13) / 127 /
DATA [IMACH(1d) / 38/
DATA IMACH(15) / <127 /7
DATA IMACH(1Ss) / 127 7/

MACHINZ CONSTANTS FOR THE HCONEYWELL 200/50060 S:IRIZE.

~

DATA IMACH(1)

DATA IMACH(7}
DATA IMACE(3)

/ 5
DATA IMACH(2) / 5 /
DATA IMACH(3) / i3 7/
DATA IMACH(1) / 5 /
DATA [MACH(3) / 35 /
DATA [IMACH(8} / 3/
/ 2/
/ 3

ta)

zsReNESNsNesNeNeNeNeNoNs N EzEsEsEcs R RN NN N NN NoNeoNoNeoNeNeoNoNeNoNoNoNeoNoNeN e NeNeRe R R R R Re Re e N e

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(15)

NN N N NN NN

MACHINE CONSTANTS
THE XEROX SIGMA 5/7/9

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH(1)
IMACH({ 2)
IMACH(3)
IMACH(4)
IMACH(5)
[MACH(6)
IMACH(7)
IMACH({ 8)
IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
FMACH(13)
IMACH(13)

NN N N N N N N N NN NSNS

MACHINE CONSTANTS

DATA
DATA
DATA
DATA
DATA
JATA
DATA
DATA
DATA
OATA
DATA
DATA
DATA
DATA
DATA
DATA

MACHINE CONSTAN

IMACH(1)
IMACH(2)
IMACH(2)
IMACH(1)
IMACH(3)
IMACH(3)
IMACH{ 7)
IMACH(8)
[tAACH(9)
IMACH(10)
IMACH (11
IMACH(12)
IMACH(L3)
IMACH(134)
IMACH(15)
IMACH(185)

N N e T N

-~
N
-

037
2
27
-127
127
53

-127
127

FOR

L

f . ~
Q> Y - O N — W)
G de = LI = DD Y) e Y O S O WY

s
w (e}
Qr Y O 0

~1 Ca)

(@]
300 N1 RN S U N OV

— b
G N oM

fee

-101

)
~J

.,1
[e5)
he's]

77

NN N N N TN NN NN NN N

~ ~

2-6

i117177177 /

~

NN N NN N

THE IBM 3607370 SERIES,
AND THE SEL SYSTEMS 35/3%6.

FFFF /
THE PDP-10 (KA PRCCESSCR,.
7
/
/
/
/
/
/
77177777 /
/
/
/
/
/
/
/
v Trz P0P-:i0 {K! PROCIZSSIORY.

O(‘)OOO(‘)L‘)O(‘)OOOC‘)OOOOO()O(‘)OC)OOOOOOOOOOOOOOOOOOOOOOOOOOO

DATA IMACH(1) / 5 7/
DATA IMACH(2) / 6 /
DATA IMACH(3) / 5 /
DATA IMACH(4) / 6 /
DATA IMACH(5) / 36 /
DATA IMACH(6) / 5/
DATA [IMACH(7) / 2/
DATA IMACH(8) / 35 /
DATA IMACH(§) / "3771777777777 /
DATA IMACH(10) / 2/
DATA IMACH(11) / 27 /
DATA IMACH(12) / -128 /
DATA IMACH(13) /7 127 /
DATA [IMACH(14) / 62 /
DATA IMACH(15) / -128 /
DATA IMACH(16) / 127 /

MACHINE CONSTANTS FOR PDP-11 FORTRAN'S SUPPORTING
32-817 INTEGER ARITHMETIC.

DATA IMACH(1)
DATA IMACH(2)
DATA IMACH(3)
DATA IMACH({ 4)
DATA IMACH(5)
DATA IMACH(&)
DATA IMACH(7)
DATA IMACH(8)
CATA IMACH(9)
DATA IMACH(10)
DATA IMACH(1l)
DATA IMACH(12)
DATA [IMACH(13)
DATA IMACH(14)
DATA IMACH(I5)
DATA IMACH(1S)

[S¥]

R T e N
. [pN)
— -
NP UY RN NN 4=
SN O = e N L N e N OO O
-
S N N - T T T N
(@S]
[6}]
N
-~
\\

.
— —

MACHINE CONSTANTS FOR FDP-11 FORTRAN'S SUPPORTING
16-81T INTEGER ARITHMETIC.

DATA IMACH(1) / 3/
DATA IMACH{ 2) / 5 /
DATA IMACH(3) / 37
DATA IMACH(1) / 3/
DATA IMACH(5) / 16 /
DATA IMACH(&) / 27
DATA IMACH(7 / 2/
DATA IMACH(8) / 57
DATA IMACH{ 3) / 22787 /
DATA 1MACH(10Q) / 2

>N NeNoNoNoNoNeoNsrNsNeNoNeNoNoNoNoNolNeNeNeoReoNeoNeoNeoNeoNe Re R XS]

[}

DATA IMACH(11) /
DATA [IMACH(12) /
DATA IMACH(13) /
DATA IMACH(14) /
/
/

.

DATA IMACH(15)
DATA IMACH(16)

PO PO DN NN
NI B B I N

.

MACHINE CONSTANTS FOR

NOTE THAT THE PUNCH UN
WHICH 1S APPROPRIATE F
IF YOU HAVE THE UNIVAC

DATA IMACH(1) / 5
DATA IMACH(2) / 6
DATA IMACH(3) / 7
DATA IMACH(&) / 5
CATA IMACH(35) / 36
DATA IMACH(6) / 6
DATA IMACH(7) / 2
DATA IMACH(8) / 35
DATA IMACH(9) / 03777
DATA [IMACH(10) / Z
DATA IMACH(11) / 27
DATA IMACH(12) / -128
DATA IMACH(L3) / 127
DATA IMACH(1Y) / 30
DATA IMACH(13) /-102:2
DATA IMACH(16) / 1023
F(t L7, 1 .0OR. |

{ IMACH=IMACR (1)
RETURN

WRITE(QUTPUT.9000)
FORMAT(3SHIEZRROR i

CALL FSUMP

ST0P

ND

(3%
f
©o

NN NN N N

THE UNIVAC 1100 SER!ES.

[T, IIMACH(3)., HAS BEEN SET TC 7

OR THE JNIVAC-FOR 3YSTEM,
-FTN SYSTEM. SET |7 7O L.

SN N N NN NN

1177771 7

NN N NN N

“~

.GT. 18) GO 7O 10

IN [IMACH - | OUT OF EOUNCS)

DO

(L8]
'
O

REAL FUNCTION RIMACH(1)

SINGLE-PRECISION MACHINE CONSTANTS

RIMACH(1) = B-*(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
RIMACH(2) = B~ "EMAX™ (1 B *(-T)), THE LARGEST MAGNITUDE.
RIMACH(3) = B-~"(-T), THE SMALLEST RELATIVE SPACING.

= B8""(1-T), THt LARGEST RELATIVE SPACING.

RIMACH(4)

RIMACH(5) LCGL10(B)

TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
THE DESIRED SET OF DATA STATEMENTS SHQOULD 3E ACTIVATED BY
REMOVING THE C FROM COLUMN 1.

WHERE POSSIBLE, OCTAL OR HEXADECIMAL CONSTANTS HAVE BEEN USE
TO SPECIFY THE CONSTANTS EXACTLY WHiICH HAS iN SOME CASES
REQUIRED THE USE OF EQUIVALENT INTEGER ARRAYS.

INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2}
INTEGER LOG10(2)

REAL RMACH(5)

EQUIVALENCE (RMACH(1) . SMALL(1))
EQUIVALENCE (RMACH(2) LARGE(1))
EQUIVALENCE (RMACH(3) .RIGHT(1))
EQUIVALENCE (RMACH(4) .DIVER(1))
EQUIVALENCE (RMACH(35),L0G10())

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.

DATA RMACH(1) / 7400800000 /
DATA RMACH(2) / ZSFFFFFFFF /
OATA RMACH(3) / Z4ES80C000 /
DATA RMACH(Y) / Z4EAR00000 /
DATA RMACH(3) / 75008730€8 /

CIODDMIMIOD DO ODDD OO,

MACHINE CONSTANTS FOR THE BURROUGHS 00/7720 SYSTEMS .

[$)}
=
(o)
(]
[e}]
~i

DATA RMACH(1) / 0177100G3G602066000 /
DATA RMACH(2) / QQ7777777777771777 7
DATA RMACH(3) / 01311000000050240

DATA RMACH{4) / 0313010000000C0350 /

2-10

DATA RMACH(5) / Q1157163034761675 /

MACHINE CONSTANTS FOR THE COC 6000/7000 S

(2]
20
m
w

CATA RMACH(1)
DATA RMACH(2)
DATA RMACH(3)
DATA RMACH(4)
DATA RMACH(5)

000140090000000000008
377677777777771717177778
164040000000000000008
164140000000000000008
171645420232411757208

NN NN N
NN N NN

MACHINE CONSTANTS FOR THE CRAY 1

DATA RMACH(1l) 7/ 2300010000000000000008 /
DATA RMACH(2) / 57776777777777177777758 /
CATA RMACH(3) / 377224000000000000000¢ !
DATA RMACH(4) / 37722400000000006000008 /
DATA RMACH(3) / 37777464202324117572G8 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLiPSt S$/200

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -

STATIC RMACH(S)

DATA SMALL/20K.0Q/,LARGE/T7TT777K, 1T77777K/
DATA RIGHT/35420K,0/.DIVER/36020K.0/
DATA LOGL10/40423K,42023K/

MACHINE CONSTANTS FOR THE HARRIS SLASH 5 2ND SLASH 7

DATA SMALL(1),SMALL(2) / "2000000G. "39030GG6C201 /
DATA LARGE(1),LARGE(2) / "37777777. "00000177 /
DATA RIGHT() RIGHT(Z) / "20000000. "0QCQ0QQ3z2 /
DATA DIVER(1),DIVER(2) / 720000000, "G000033:5 /
DATA LOGLIO(1),LQG10(2) /s "23210115. "GQ0GQC377 /

MACHINE CONSTANTS FOR THE

"1

HCNEYWELL &30/5000 S

(Ra)
A
rm
(V)

DATA RMACH(1) / 0402400000CGCQ /
DATA RMACH(Z) / Q373777717777 /
DATA RMACH(3) / 0714430094300 /
DATA RMACH(2) / 071540G000G0Q0 /
DATA RMACH(Z) /7 0776454202324 /

MACHINE CCNSTANTS 7GR 7d4%Z IBM 380/270 SERIES.
THE XEZROX SIGMA 3/7/% AND THE SEL SYSTEMS 33.7:c.
CATA RMACH(1) / I§0:GCQCO /

DATA RMACH(2) / Z7FrFfFFFE /

CATA BMACA(Z) / 738157009 /

CATA RMACHTY) 2301600 /

IsEeEeNeNeNeEsEesE>E>ReNsNeoNesNeoNesNoNeoNeoNoNeNRoNoNeoNeNeNeoReoNeNeoNeNoReNoNoN s NeRe e Re R Rt R R X Ro R N o)

1

DATA

MACHINE CONSTANTS FOR THE PDP-

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS FOR PDP-11 FORTRAN'S SUPPORTING
IN INTEGER AND OCTAL).

32-81

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS FOR POP-11
16-BIT INTEGERS

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS fOR

DATA
DATA
DATA
DATA
DATA

e

CALL

RMACH(5)

RMACH({1)
RMACH (2)
RMACH (3)
RMACH(4)
RMACH (5)

2-11

/ 741134413 /

10

“000400000000C
"3777177771777
"146400000000
"147400000000
"177454202324

NN N NN
NN N NN

T INTEGERS (EXPRESSED
SMALL(1) 7/ 8338608 /
LARGE(1) / 2147483637 /
RIGHT(1) / 880803840 /
DIVER{1) / 889152448 /
LOGIO(1) / 1067065439 /
RMACH({1) / 0000400000G0C /
RMACH(2) / Q017777777777 /
RMACH(3) / 006440000000 /
RMACH(4) / 006500000060 /
RMACH(5) / 0077458420233 ¢

SMALL(L),

LARGE(1)
RIGHT (1)
DIVER(1)

SMALL(1),

LARGE(1)
RIGHT (1)
DIVER(1}
LOG:iO(1)

AMACH (1
RMACH (2
RMACH (3
RMACH (2
RMACH (3

)
)
)
)
)

7.1
SETER

.LARGE(2)
CRIGHT (2)
LDIVER(2;
LoGio(1),

LLARGE(2)
CRIGHT(2)
CDIVER(2)
.Laglio(2)

(EXPRESSED IN

SMALL(2) 128,
32787,
13419,
13588,
18282,

NN N NN

LOG10(2)

SMALL{2)

NN N NN

THE UMNIYAC
QOOO4000uCOOO/
Q277777777777
0126400000060 7/
0127408906030 /
0177463202324 ¢

NN N NN

OR. 1 UGT. 2)
cH !

R{ZIHRIMA ut

0000200,
0077777,
0032200,
00322400,
0037532,

(KA OR K

0/
-1 7
0/
0 /
47 /

0000000
0177777
0000000
0000000
6020223

1100 SE!

0

0F BOUNE

-
~

~

N N NN N

rry

PROCESSOR) .

~
P
4

1

FORTRAN'S SUPPORTING
INTEGER AND OCTAL).

7

OO0

OO0

RIMACH = RMACHI(1)
RETURN

END

[R¥]
'

p—

[R%)

DOUBLE PRECISION FUNCTION DIMACH(1)

DOUBLE-PREC!SION MACHINE
DIMACH(1) = B (EMIN-1),
DIMACH(2) = B EMAX" (1

DIMACH(3)

DIMACH(4)

DIMACH(3) = LCG10(B)

CONSTANTS
THE SMALLEST POSITIVE MAGNITUDE.

B**(-T}), THE LARGEST MAGNITUDE.

B-*(-T), THE SMALLEST RELATIVE SPACING.

B *{1-T). THE LARGEST RELATIVE SPACING.

TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
THE DESIRED SET OF DATA STATEMENTS SHOULD Bt ACT!VATED BY
REMOVING THE C FROM COLUMN 1.

WHERE POSSiBLE, OCTAL OR
TO SPECIFY THE CONSTANTS

HEXADEC!MAL CONSTANTS HAVE BEZN USED

EXACTLY WHICH SAS iN SOME CASES

REQUIRED THE USE OF EQUIVALENT INTEGER ARRAYS.

INTEGER SMALL(4)
INTEGER LARGE(4)
INTEGER RIGHT(4)
INTEGER DIVER(4)
INTEGER LOG:0(4)

ODOUBLE PRECISION CMACH(Z)

EQUIVALENCE (DMACH(1).
EQUIVALENCE (OMACH(2).
EQUIVALEINCE (OMACH(3).
EQUIVALENCE (DMACH(4).
EQUIVALENCE (DMACHI(3).

MACHINE CONSTANTS fOR

DA
0

T
ATA

SMALL(1))
LARGE{1))
RIGHT(1})
SIVER({L))

LOGED (1))

THE BURRQUGHS 1700 SYSTEM.

A SMALL(1) / ZC00329000 /
SMALL(Z) / 2090000000 /

sEsNeNoNeNeoNe NN NoNeNeNeoNsNeoNeoNesNeaNes N Neo e R Rz Es Es Es s e R s s e Es R s o e e e s e e e Rv R e e e R I o)

[N
'

—

U

ODATA LARGE(l) / IDFFFFFFFF /
DATA LARGE(2) / ZFFFFFFFFF /

DATA RIGHT(1) / ZCC5800000 /
DATA RIGHT(2) / 2000000000 /

DATA DIVER(1) / 2CC6800000 /
DATA DIVER(2) / 7000000000 /

DATA LOG!O(1) / ZDOOE730E7 /
CATA LOGLO(2) / ZC77800DCO /

MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.

DATA SMALL(1) / 0177:000000000000 /
OATA SMALL(2) / 00000000000000000 /

DATA LARGE(!) / 00777777777777777 /
DATA LARGE(2) / 00007777777777717 /

DATA RIGHT(1) 7 014510000060000060 /
DATA RIGHT(2) / 0000C000000000000 /

DATA DIVER(1) / 014510000000060000 /
DATA DIVER(2) / 00000000000000000 /

CATA LOGI1O(1) / 011571630347515874 /
DATA LOG10(2) / 000065677465732724 /

MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.

DATA SMALL(1) / 01771000000000000 /
DATA SMALL(2) / 07770000000000000 /

DATA LARGE(!) 7 0077777777777771717 /
DATA LARGE(2) /7 0Q777777177777117177 /

DATA RIGHT(1) / 01461000000000000 /
DATA RIGHT(2) / 00000000000600C000 /

DATA DIVER(1) / 0143100060000000200 /
DATA DIVER(2) / 00€00000000000000 /

DATA LOGIO

(1 /
DATA LOGIG(2

) / 011371 2
i/ 000088 i/

MACHIMNE CONSTANTS FOR THE CDC 3000/7000 SERIES.

DATA SMALL{1) / 005040500000000000008 /
DATA SMALL(2) / 0000000000000630000CE /

OOOOOOOODOOOOOOOOOOOOOOOC“)OOOOOOOOOOOOOOOOOOOOOOOOO

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

LARGE(1)
LARGE (2)

RIGHT (1)
RIGHT(2)

DIVER(L)
DIVER(2)

LOG1Q (1)
LOG10(2)

~

377677777777717777778 /
37167777777771771777178 /

156040000000000000008 /
150000000000000000008 /

156140000000000000008 /
150100000000000000008 /

17164642023241173717
16367571421742254654

MACHINE CONSTANTS FOR THE CRAY 1

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

SMALL(1)
SMALL(2)

LARGE ()
LARGE(2)

RIGHT(1)
RIGHT(2)

DIVER(1)
DIVER(2Z)

LOG10(1)
LOG10(2)

/
/

20000400000002000004G08
000000000000000000000C8

57776777777777777771778
0000077777777777777768

3764240000000000000C00C8
000000000000000000000C83

3764340000000000000008
00000000000600000000¢C3

37777484202324

11737
000007571421742254%

(S

i3
45

MACHINE CONSTANTS FOR THE DATA GENERAL

NOTE

1T MAY BE APPROPRIATE 70

STATIC DMACH(5)

DATA SMALL/20K.3°0/ . LARGE/77777K, 3" 177777K/
DATA RIGHT/31420K,3°0/.DIVER/32020K.3°0/

DATA LOG10/30423K,42023K.30237K, 747786K/
MACHINE CONSTANTS FOR THE HARRIS SLASH

DATA SMALL(:),SMALL(Z) / "20000000. "Q0GC020!
DATA LARGEZ (1) ,LARGE(2) ~ "37777777. 37777371
DATA RIGHT(1),RIGHT(2) / 20000000, "9C0CQ332
DATA DIVER(L) DIVER(2) / "20006000., "0G0000232
CATA LOGIOQ(1),L0G10(2Z) / 723210115, "19237777
MACHINE CCONSTANTS FOR THE HONEYWELL 560/35000 SERIES.
DATA SMALL(1), SMALL(Z) /7 0402400002009,

8 /
8

INCLUDE

.

~

Lt?

(#2]
m

/2080

(9]

-
L

iAE

5 AND SLASH 7

/
/

’

0003006000480

FOLLOWING CARD -

/

O(‘)OC)O(jOOOOOO(‘)OOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOO

DATA LARGE(1),LARGE(2) /
DATA RIGHT(1) ,RIGHT(2) /
DATA DIVER(1) DIVER(2)
DATA LOG10(1l),LOG10(2)

(%]
'

s

o

0376777777777,
0604400000000,
/ 0606400000000,
/ 0776464202324,

0777771777777
0000000000000
0000000000000
0117571775714

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,

THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/85.

DATA
DATA
DATA
DATA
DATA

SMALL(1),
LARGE(1),
RIGHT(1).
DIVER(1),
LOG1a (1},

SMALL(2)
LARGE(2)
RIGHT(2)
DIVER(2)
LGG10(2)

NNNN N

200100000,
ITFFFFFFF,
233100000,
234100000,
741134413,

200000000
LFFFFFFFF
00000000
200060000
Z509F79FF

NN N NN

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

DATA
DATA
DATA
DATA
DATA

SMALL(1),SMALL(2) /
LARGE(1).LARGE(2) /
RIGHT (1) ,RIGHT(2) /
DIVER(1)} ,DIVER(2) /
LOG!0({1),L0G10(2) /

MACHINE CONSTANTS FOR THE

DATA
DATA
DATA
DATA
DATA

SMALL(1),SMALL(2) /
LARGE(1),LARGE(2) /
RIGHT(1) ,RIGHT(2) /
DIVER(1).DIVER(2) /
LOG10(1),L0G10(2) /

“033400000000, "000000000000
"377777777777. "344777777777
©113400000000, "000000000000
"114400000000, "000000600000
“177464202324, "144117571776
POP-10 (KI PROCESSOR).

“000400000000. "0000000000600
"3777777717177, "3777117771777
"103400000000. "000000000000
"104400000000. "000000000000

"17758420232¢4,

"476747767461

MACHINE CONSTANTS FOR PDP-11 FORTRAN'S SUPPORTING
32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

SMALL(1),
LARGE(1),
RIGHT(1),
DIVER(1),
LOGIO(1),

SMALL(1),
LARGE(1) .
RIGHT(1)
DIVER({1),
LOGlo(1),

SMALL(2)
LARGE(2)
RIGHT(2)
DIVER(2)
LOG10(2)

SMALL (2}
LARGE(2)

CRIGHT(2)

DIVER(2)
LOG1G(2)

NN N NN

NN N NN

MACHINE CONSTANTS FOR PD

15-BIT INTZGERS

DATA
DATA

SMALL (L)
SMALL(3)

SMALL(2)
SMALL (2}

(EXPRESS

/
/

H
ED I

3388608,
2147185647,
812388384,
520736892,
1067055498,

000040000000,
Q17777777777
004440000000,
004200000000,
007746420232,
-11 FORTRAN'S
INTEGER

128,
0.

206387200

0/

00 O O w— O
SN N N N

000000000000

Q37777777777 /
000000000000 -

GC0200000006

020478747770 /

SUPPLCRTING
AND GCTAL) .

0

NN N N

NN N N

NN N NN

OOOOOC’)OOOOOOOOO(')OOOOOOOOOOOOOGOOOOOOO

[=)

- 16

DATA LARGE(1),LARGE(2) / 32787, 1/
DATA LARGE(3),LARGE(4) / -1, 1/
DATA RIGHT(1) RIGHT(2) / 9344, 0/
DATA RIGHT(3).RIGHT(4) / 0. 0/
DATA DIVER(1),DIVER(2) /7 =~ 8472, o/
DATA DIVER(3),DIVER(4) / 0. 0/

DATA LOG10(1),L0G10(2) / 16282, 8346 /
DATA LOG10(3).LOGL0(4) / -31493, -12296 /

DATA SMALL(1),SMALL(2) / 0000290, 0000000 /
DATA SMALL(3),SMALL(2) / (000000. 000000G0C /

DATA LARGE(1),LARGE(2) / 0077777, Q177777 /
DATA LARGE(3),LARGE(4) / 0177777, Q177777 /

DATA RIGHT(1),RIGHT(2) / 0022200. 0000000 /
DATA RIGHT(3),RIGHT(4) / 0000000. 0000000 /

DATA DIVER(1),DIVER(Z) / 0022400, 0000000 /
DATA DIVER(3).DIVER(4) / 0000000. 00C0Q000 /

-~ ta)

[ams T o8)

DATA LOGIO0(1),L0G10(2) / 0037632, 0029
DATA LOGI0(3),L0GL0(4) / 0102373, Q=7

-~ N

‘

VMACHINE CONSTANTS FOR THE UNIVAC 1130 SERIEEZS.

DATA SMALL(1).SMALL(2) / 0000€40000000. 5030690000009
OATA LARGE(1),LARGE(2) / 0377777777177. Q777777777777
DATA RIGHT(1),RIGHT(2) / 0170540000060, 0000000000000
DATA DIVER(1).DIVER(2) / 0170640000000, £CCCG0CC00000
DATA LOGIO(1).LDG10(2) /7 0177746420232, 0411737177572

IF (¢ .LT. 1 .CR. | .GT. 3)
l

! CALL SETERR(Z4HDIMACH - QUT OF BOUNDS.Z1.1.2)

DIMACH = OMACH(I)
RETURN

END

~

NN N

(8]

- 17

Automatic error-handling

The second package provides a basic mechanism for dealing with the occurrence of errors.

In the PORT library, calls to the general subroutines in the library do not include, in their cal-
ling sequences flags for error indication. Instead. when a called subrouiine detects an error it
calls the principal error-handling routine, SETERR.

The package allows for two types of error. *fatal’, and ‘recoverable.” and a parameter in the call
to SETERR must be set to specify the type. Fatal errors cause an error message to be prinied,
the run terminated, and a call made to a dump routine. (A dummy dump routine, FDUMP, is
provided here.) For recoverable errors, unless the user has specifically requested to enter the
recovery mode. similar events occur, an error message is printed and the run terminated. Thus
the process is fail safe for unwary users.

When the recovery mode is in effect. any cail to SETERR given within a subprogram which has
detected a recoverable error. has the effect only of storing the fact that that an error has
occurred; the run is not terminated. The user, upon return from the subprogram is responsible
for testing for the occurrence of an error. If an arror has occurred, the user must turn off the
error state, because additional errors might arise and the occurrence of a recoverable error
while in the error state constitutes an unrecoverable error, terminating the run.

Finally. since a called subprogram. say SUBA, may, in turn, call a lower-level subprogram con-
taining recoverable errors, SUBA must check for the occurrencs of errors in the lower-isvel
routine and reinterpret them in the context of SUBA, which the user knows about. This means
that SUBA must enter the recovery mode, (saving the mode previously in effect). make the call
10 the lower-level subprogram, then. upon return from the lower-level routine, check for
errors, and. before raturning to the user, resior2 the previous recovery mode.

An error which has caused an invocation of SETERR has an associatad number, message, and
type (fatal or recoverable), and the effect of the error depends on whather the recovery mode is
in 2ffect or not. The various capabilities offered in the subprograms of the package are sum-
marized below:

To signal that an error has occurrad:
CALL SETERR(MESSG, NMESSG, NERR, 1I0PT)
where MESSG and NMESSG are, respectively a Hollerith message and the aumber of
characters in the message, and NERR is the error number. IOPT is used to specify the
tvpe of error: IOPT = 1 feor a recoverable zrror, and = 2 for a fatal error.

To save the recovery (or nonrscovery) mode currently in eifect, and enter a new one:
CALL ENTSRC(IROLD, IRNEW)

which saves the current mode in IRNEW and sets the new one 1o IRNEW .

To avoid having muitipie errors outsianding, i: is a fatal 2rror 10 cail SETERR or ENTSRC ir
the error state is on, meaning hat an error has occurr2d but not dean recoverad {rom.

2-18

To restore the recovery (or nonrecovery) mode which was previously saved in [ROLD:
CALL RETSRC{IROLD)
RETSRC rot only restores the pravious mode, but also acts as a ‘safety’ exit gate: Since
multiple errors are illegal, RETSRC checks out the situation and allows retum to the cal-
ling program only if (1) an error is not outstanding, or (2) the restored mode is

recovery, so that the calling program is responsibie for error checking.
g

To test if an error has occurred. and if its number was, say, 4, a statement such as the follow-
ing is used:

IF (NERRCOR{NERR) .EQ. 4) GO TO 30

The value of the function, NERROR, and the value of the argument. NERR, are both
set to the current value of the error number by NERROR. (The double assignmant may
be useful and comes free since Fortran prohibits functions with no arguments.) If the
error number is non-zero, it means that an error has occurred and that corractive action
must be taken.

To tumn off the error state:

CALL ERROFF

In summary the user subprograms are:

SZTERR - turns on the error state, and
saves a message and an 2rror aumber

INTSRC - at antry, sets recovery (or nonracovery) mode.
provided no error staie 2xists

RETSRC - before returning. ciecks error situation and, if ok,
restores prior recovery (or nonrecovery) mode

NERRQR - returns the arror number
ERRCFF - wurns off the error siat2

EPRINT - prints the error messags

19

- 19

These, in turn, call on the lower-level subprograms:

s NeoNeoNoNeNeoNeNeNelelelelNeolNeleolelNo ol elle e N e Ne el el ol el

OO oO

o

EIRINT - stores or prints error message, depending on switch satting

S88FMT - sets up FORMAT array for printing

t8SAVE - returns error number or recovery (or nonrecovery) mode,
depending on one swiich. and resets or does not

reset the corresponding value depending on another

FDUMP - a dummy routine to be replaced, if possible,
by a locally written svmbolic dump routine

SUBROUTINE SETERR(MESSG,NMESSG,NERR, IQOPT)

SETERR SETS LERROR = NERR, OPTIONALLY PRINTS THE MESSAGE AND
DUMPS ACCORDING TO THE FOLLOWING RULES...

IF 10PT = 1 AND RECOVERING - JUST REMEMBER THE ERROR.

IF 10PT =1 AND NOT RECOVERING - PRINT AND STOQOP.

e [0PT = 2 PRINT, DUMP AND STOQP.
INPUT

MESSG - THE ERROR MESSASE.

NMESSG - THE LENGTH OF THE MESSAGE, IN CHARACTERS.

NERR - THE ERRCR NUMBER. MUST HAVE NERR NON-ZERO.

1CPT - THE OPTION. MUST HAVE i0PT=1 QR 2.

ERROR STATES

- MESSAGE LENGTH NOT POSITIVE.
CANNOT HAVE NERR=0.
AN UNRECOVERED ERROR FOLLOWED BY ANOTHER ERROR.
BAD VALUE FOR 10PT.

(% I o\ e g

$a

ONLY THEZ FIRST 72 CHARACTERS OF THE MESSAGE ARE PRINTEZD.
THE ZRROR HANDLER CALLS A SUBROUTINZ NAMED FOUMP TQ PRCOUCE A
SYMBOLIC DUMP. 70 COMPLETEZ THE PACKAGE, A DUMMY VERSION CF F2OUMP
IS SUPPLIED. 8UT IT SHOULD 3E REPLACED B8Y A LOCALLY WRITTEIN
VERSION WHICH AT LEAST GIVES A TRACE-BACK.

INTEGER MESSG(1)

TH

(Aa)

UNIT FOR ERRCR MESSAGES.

FWUN I T=1 (MACH (1)

(B8]

-20

IF (NMESSG.GE.1) GG TO 19
C

C A MESSAGEt OF NON-PCSITIVE LENGTH IS FATAL.
C

WRITE(IWUNIT, 9000)

3000 FORMAT(5ZHIERROR I IN SETERR - MESSAGE LENGTH NOT POSITIVE.)

GO TO 60
C NW IS THE NUMBER OF WORDS THE MESSAGE OCCUPIES.
10 NW=(MINO(NMESSG,72)—1)/11MACH{5)+1
IF (NERR.NE.O) GO TO 20
C CANNQOT TURN THE ERROR STATE OFF USING SETERR.

WRITE(IWUNIT,9001)
300! FORMAT(42H1ERROR 2 IN SETERR - CANNOT HAVE NERR=0//
1 3J4H THE CURRENT ERROR MESSAGE FOLLOWS///)
CALL ESRINT(MESSG.NW,NERR,.TRUE.)
ITEMP=18SAVE(1l,1, .TRUE.)
GO T0 30
C
C SET LERRGR AND TEST FOR A PREVIOUS UNRECOVERED ERROR.
C
20 IF (12SAVE(]1 ,NERR,.TRUE.).EQ.0) GO TO 39
¢
WRITE{IWUNIT,9002)
%002 FORMAT (23H1ERROR 3 IN SETERR

L S

CALL EPRINT
CALL E9RINT(MESSG, NW, NERR, .TRUE.)
GO TO 50
C
C SAVE THIS MESSAGE [N CASE IT 1S NOT RECGOVERED FROM PROPERLY.
C
30 CALL ESRINT(MESSG,NW,NERR. .TRUE.)

[ap]

LF (IOPT.EQ.! .QR. I0PT.EQ.2) GO TO 48

MUST HAVE I10PT =1 OR 2.

OO

WRITE(IWUNIT, 9003}
8003 FORMAT(42H1ERROR 4 IN SETERR - BAD VALUE FOR ICPT//
i 344 THE CURRENT EZRROR MESSAGE FOLLOWS///)
GO TO 5§

PP THE ERRCR 1S FATAL. PRINT. DUMP, AND ST7C°?

(@]

[ep BN ov BN qp]

48H AN UNRECOVERED ERROR FOLLOWED BY ANOTHER ERROR.//
48H THE PREVIOUS AND CURRENT ERROR MESSAGES FOLLOW.///)

40

OO0

[I a0 2N o]

O MOOOOOOOOOOMOOOO0o

(@)

(]

e
1

(3]

p—

I'F (IOPT.EQ.2) GO TO 39

HERE THE ERROR |S RECOVERABLE

|F THE RECOVERY MODE IS IN EFFECT, OK, JUST RETURN
IF (18SAVE(2,0, .FALSE.).EQ.1) RETURN

OTHERWISE PRINT AND STOP

CALL EPRINT
STOP

CALL EPRINT
CALL FOUMP
sSToP

END

SUBROUTINE ENTSRC(IROLD, IRNEW)
THIS ROUTINE RETURNS IROLD = LREICOV AND SETS LRECO

IF THERE 13 AN ACTIVE ERROR STATE, THE MESSAGE 1S
AND EXECUTICN STOPS.

IRNEW = 0 LEAVES LRECOV UNCHANGED, WHILE
IRNEW = 1 GIVES RECOVERY AND
IRNEW = 2 TURNS RECOVERY OFfF.

ERROR STATES -

1 - JTLLEGAL VALUE QF IRNEW.
2 - CALLED WHILE IN AN ERRGR STATE.

IF (IRNEW.LT.O0 .OR. IRNEW.GT.2}
i CALL SETERR(3IHENTSRC - ILLEGAL VALUZ OF IRN

[ROLD=I13SAVE(2, IRNEW. IRNEW.NE. Q)

IF (18SAVE(L,0, . FALSE.) .NE. G) CALL SETERR
i {3GHENTSRC - CALLED WHILE !N AN ERRQR STATEL.

RETURN

£ND

V = IRNEW.

PRINTED

EW.31.1.23

29.2.2)

