Background, Motivation, and a Retrospective View of the BLAS

Charles L. Lawson
Retired from Jet Propulsion Laboratory
California Institute of Technology
Home: 301 Calle Pueblo
San Clemente, CA 92672
clawson@na-net.ornl.gov

1 Introduction

During the initial development of computers in the 1940's and early 1950's the chain of intermediate
technologists between the computer designer/builder and the computer user was very short. In fact
it was not uncommon for one individual to be actively involved in the design, construction, and
application of a computer. By 1970 there was a significant amount of infrastructure between the
computing machine and the end user - for example, from low-level to high-level one could cite
operating systems, compilers, general-purpose software, and applications-specific software. Each
level of this infrastructure absorbed the creativity and energies of its own community of specialists
trying to improve its link in the chain. This frequently took the form of trying to better meet the
perceived needs of the higher levels in the infrastructure while coping with the limitations and
peculiarities of the resources provided by the lower levels.

The original BLAS [16] constituted a contribution to the general-purpose mathematical
software stratum of the computing infrastructure. To better understand the influences that led to
their development, let us very briefly recount some of the activity regarding general-purpose
mathematical software in the early 70’s.

2 Background and Motivation for the BLAS

Through the late 1960’s and up to about 1971 a number of collections or libraries of mathematical
software had been assembled. Typically each of these libraries was developed for, and useable on,
just one brand of computer system. Examples would be a library collected and/or developed by a
computer vendor for use with their computer, or a library collected and/or developed by a large
organization’s computing center for use within that organization. For instance, Michael Powell
recalls developing a math library at the Harwell Laboratory in the early 1960's.

Even the two organizations, NAG [5] and IMSL [12], that later became the world’s main
suppliers of math libraries across diverse machine types, each started in 1970 by targeting a single
machine type. NAG started as an informal cooperative effort by six institutions in England to
develop a math library for their newly acquired ICL 1906A systems. Their first library, in both Algol
and Fortran versions, was available to the participating institutions in October, 1971, and they
immediately started attacking the problem of developing the library for other computer types.

IMSL was founded in 1970 as a company to develop and market mathematical and statistical
libraries. A major motivation for the founding of IMSL was a perception of customer dissatisfaction
with the math libraries provided by IBM for use on their systems. IMSL’s first product, available in
1971, was a Fortran library for the IBM/370-360.

Designing math library software to be portable across diverse systems was particularly
difficult in the 70’s because there were significant differences between the arithmetic characteristics
of computers from different manufacturers, the state of standardization of programming languages
was in its infancy, and operating systems (encompassing file naming and file storage) were quite
different on different computer brands. Fortran was the only language widely supported in the U.S.,
and the only language for which there was an ANSI standard (1966). However the standardized



language had major shortcomings so programmers tended to use vendor-specific extensions and that
worked against portability. Algol and Fortran were both used in Europe.

A project called NATS (National Activity for Testing Software or NSF, Argonne, Texas,
Stanford) [1] undertook during 1971-1972 to investigate the problems of achieving Fortran
portability for mathematical software by testing, and as necessary modifying, a Fortran version of a
set of dense matrix eigenvalue/eigenvector algorithms. These 30 algorithms were originally
developed in Algol and published in a series of papers in the 1960’s by J. H. Wilkinson and others,
and subsequently published together as the Handbook ... [18]. The collection was converted to
Fortran by Virginia Klema and others at Argonne National Laboratory and then processed for
portability by NATS. NATS announced the availability of EISPACK [2, 17, 6] in 1972, the package
having been successfully tested on IBM 360-370, CDC 6000-7000, Univac 1108, Honeywell 635, and
PDP-10 computers. The same EISPACK code ran on all these systems, with the exception of one
variable that needed to be set to indicate the precision of the arithmetic on the host system.

EISPACK was widely requested and distributed. This project demonstrated the great utility
of carefully tested portable mathematical software based on state of the art algorithmic research.
But did (Fortran) portability mean sacrificing efficiency? Library developers began giving more
attention to this issue, and new hardware designs presented new challenges and opportunities. For
example the CDC 7600 had an instruction cache of about 16 instructions. If a loop were complete in
this number of instructions it would execute much faster than would a longer instruction sequence.

Experience with library usage showed that linear algebra codes were the most heavily used,
and in these codes most of the execution time is spent in inner loops that implement either a dot
product of two vectors, or the “elementary vector operation” of replacing a vector, y, by y plus the
product of a scalar, a, and a vector, X. Thus improving the efficiency of these operations in portable
software could be expected to have a worthwhile payoff in improving the efficiency of scientific
computing generally.

3 Developing the BLAS

At the Jet Propulsion Laboratory (JPL), Richard Hanson, Fred Krogh, and Charles Lawson were in a
numerical mathematics group that, among other tasks, developed and supported an in-house math
library for the Univac 1108, from about 1969 to 1977 (and in subsequent years developed libraries
portable in Fortran 77 and ANSI C, known respectively as MATH77 and Mathc90.) A 1972 internal
memo by Krogh [13] reported on a timing study comparing code written in Fortran in two different
ways, and written in Univac assembly code, for the two basic vector operations noted above, plus the
Euclidean norm and finding the element of largest magnitude in a vector.

Believing that developers of library-type math software could benefit from the availability of
efficient portable software modules for these basic vector operations, H., K., & L. came up with a
proposal [10] in November, 1973 for such a collection as a candidate for widespread use. David
Kincaid, University of Texas, became actively involved, giving particular attention to assembly coded
versions for the CDC 6600.

The ACM SIGNUM Newsletter was used as a vehicle to communicate this proposal and its
subsequent evolution [9, 14]. (Recall that we did not have the Internet and email in those years, and
the SIGNUM Newsletter was a very useful vehicle for the informal exchange of information in the
numerical analysis community with less delay than a refereed journal.) A lively open meeting was
held to discuss and modify the proposal in May, 1974, at the Math Software Il Conference at Purdue
University, with another less eventful meeting at the National Computer Conference in Anaheim,
May, 1975. By 1977, Hanson was at Sandia, Albuquergue, and the Sandia report [11] issued in 1977
was essentially the final version. This final version appeared in ACM TOMS in September, 1979
[16].

The LINPACK project was ongoing during this same time period, having started shortly
after the first release of EISPACK, and publishing LINPACK [4] in 1979. The LINPACK project
made an early decision to use the BLAS. Jack Dongarra, who was a coauthor of LINPACK made



substantial contributions, [3], to the testing and coding of the BLAS, particularly adding loop-
unrolling to the Fortran versions.

4 What operations are in the BLAS?

The choice of functionalities included in the BLAS was based on the goal of supporting the writing of
library routines for the dense matrix problems of linear equation solving, eigensystems, and linear
least-squares. It was agreed to include only operations that involved a single level of looping.
Following is a table of the functionalities provided, along with the root name for each functionality,
and the set of prefixes, or prefix/suffix pairs, allowed with each root name.

Dot product s, ds, sds, d, dg_ i, dg_ _a, ¢_ ¢, ¢c_ _udot
Scalar times a vector plus a vector s, d, c axpy
Construct Givens plane rotation s, d rotg
Apply a plane rotation s, d r ot
Construct a modified Givens rotation s, d r ot ny
Apply a modified rotation s, d rotm
Copy a vector s, d, ¢ copy
Swap two vectors s, d, ¢ swap
Two-norm of a vector s, d, sc nrnP
Sum of magnitudes of vector components s, d, sc asum
Scalar times a vector s, d, ¢, cs scal
Index of element of largest magnitude is, id, ic amax

The letters s, d, ¢, g, and i in prefixes denote respectively single precision, double precision, single
precision complex, extended precision, and integer data types. The letters c, u, i , and a in suffixes
denote respectively conjugated, unconjugated, initial, and accumulating.

There are a total of 38 subprograms. The original 1973 proposal, [10], had 39 subprograms.
Of these, two had a modal argument, and in the final package each of these subprograms was
replaced by two subprograms to avoid having modal arguments. The subprogram sdsdot was added
and four subprograms from the original proposal were dropped, leaving the number of subprograms
in the final package one less than in the original proposal.

Some of the root names were changed, particularly at the 1974 Purdue meeting. The root
name axpy denoting “a times x plus y", replaced the original name el vop which denoted
“elementary vector operation”. The names sdot and saxpy (or ddot and daxpy) have become
standard terminology in the literature of computational linear algebra to denote these fundamental
operations. The name saxpy was adopted as the name of a company manufacturing a workstation in
the 1980's, presumably to remind the marketplace that it was designed to do saxpy's rapidly.

Double precision complex data types were not included in the BLAS package because this
data type was not included in the Fortran 66 or Fortran 77 standards. The LINPACK project did
include this data type however, and it is suggested in [16] that the letter z be used in names for this
data type, as was done in LINPACK, if the package is extended to handle it.

A fair amount of publicity was given in the 1960's to the accuracy advantages of using extra
precision in the accumulation of inner products. This probably led to our inclusion of the various
mixed precision dot product subprograms. The now widely used IEEE arithmetic units, that carry a
few extra bits of precision internally, make these mixed precision subprograms less important on
contemporary computers.

Computation of the two-norm of a vector is well known to present the hazard that
intermediate results may need twice the exponent range of the input numbers and of the final result.
Again the IEEE arithmetic units give some relief for this, as they carry extra bits in the exponent
internally. The two-norm subprograms in the BLAS use an algorithm devised for the BLAS by
Lawson that does the computation with just one pass through the vector, doing scaling on the fly if
necessary to avoid overflow or underflow if it is avoidable and would affect the accuracy of the result.



A modified algorithm for the generation and application of Givens rotations (of use, e.g., in
least-squares computations) that used two multiplies and two adds, instead of four multiplies and
two adds, per pair of elements transformed, was devised in the early 1970's by Gentleman [7] and by
Hammarling [8]. This maodification has scaling hazards and inherent complexity that can easily
discourage one from trying to implement it, and the potential reduction of execution time is fairly
modest. We attempted with the modified Givens subprograms in the BLAS to encapsulate the
complexity and handle the scaling in a way that would make it more straightforward for persons to
experiment with the use of this method. Specifically we implemented the approach described in [15].

Conclusions

One of the motivations for developing the BLAS was to provide names and argument lists that might
become widely used and recognized for some of the basic operations of computational linear algebra.
It was hoped that this would aid software developers by providing a standard set of building blocks,
and also aid the person who is faced with the need to understand code written by someone else. |
think the original BLAS have served this role quite well, having been used in many software
development projects.

Another motivation was to improve the efficiency of math software, by providing
standardized subprogram interfaces with the possibility of improving the efficiency of the code
beyond the interface to take advantage of special machine features. This potential was realized with
the provision of machine tuned versions of the BLAS on numerous brands of computers, especially
providing efficient implementations of _dot and _axpy.

With the development of vector machines in the late 1970's and numerous variations of
pipelining, cache, multilevel memory systems, and parallel processing systems in the 1980's and
1990's, it was observed that the vector operations of the original BLAS package were too limited to
exploit the possible efficiencies of these new machine architectures. The model of a BLAS type
package still appeared to be useful but it was seen to be necessary to encapsulate matrix-vector and
matrix-matrix operations as well as the vector operations of the original BLAS, and design
specifically for parallel processing. This led to the successor BLAS packages that are the subject of
the other speakers in this minisymposium.

References

[1] ANNOUNCEMENT, NATS Project - Collaborative Research toward the Development of a Certified
Sub-routine Library, ACM SIGNUM Newsletter, 6, 3, Nov 1971, p. 5.

[2] ANNOUNCEMENT, The Certified Eigensystem Package, EISPACK, ACM SIGNUM Newsletter, 7, 2,
July 1972, pp. 4-5.

[3] J.J. DONGARRA, Fortran BLAS Timing - LINPACK Working Note 3, Argonne National
Laboratory, Argonne, IL, draft of March 1977.

[4] J.J. DONGARRA, J. R. BUNCH, C. B. MOLER, AND G. W. STEWART, LINPACK Users Guide, SIAM,
Philadelphia, PA, 1979.

[5] B. ForD, The Nottingham Algorithms Group (NAG) Project, ACM SIGNUM Newsletter, 8, 2,
April 1973, pp. 16-21.

[6] B.S. GARBOW, J. M. BOYLE, J. J. DONGARRA, AND C. B. MOLER, Matrix Eigensystem Routines -
EISPACK Guide Extension, Vol. 51 of Lecture Notes in Comput. Sci., Springer-Verlag, Berlin,
1977.

[7] W. M. GENTLEMAN, Least Squares Computations by Givens Transformations without Square
Roots, J. Inst. Math. Appl., 12, 1973, 329-336.

[8] S.J. HAMMARLING, A Note on Modifications to the Givens Plane Rotation, J. Inst. Math. Appl.,
13, 1974, 215-218.



[9] R.J. HANSON, F. T. KROGH, AND C. L. LAWSON, Improving the Efficiency of Portable Software for
Linear Algebra, ACM SIGNUM Newsletter, 8, 4, Oct 1973, p. 16.

[10]R. J. HANSON, F. T. KROGH, AND C. L. LAWSON, A Proposal for Standard Linear Algebra
Subprograms, Jet Propulsion Laboratory Technical Memorandum 33-660, November, 1973,
vi+14 pp.

[11]R. J. HANSON, C. L. LAWSON, D. R. KINCAID, AND F. T. KROGH, Basic Linear Algebra
Subprograms for FORTRAN Usage - An extended report, Sandia Tech. Rep. SAND 77-0898,
Sandia Lab., Albuquerque, NM, 1977.

[12]O. G. JOHNSON, IMSL'’s ideas on subroutine library problems, ACM SIGNUM Newsletter, 6, 3,
Nov 1971, pp. 10-12.

[13]F. T. KROGH, On the Use of Assembly Code for Heavily Used Modules in Linear Algebra, JPL
Internal Memorandum, May 2, 1972, 13 pp.

[14]C. L. LAWSON, Proposed Standard Subprograms for Basic Linear Algebraic Operations., ACM
SIGNUM Newsletter, 9, 2, April 1974, pp. 21-22.

[15]C. L. LAwsON, AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, 1974.
Republished with an updating appendix by SIAM, 1996.

[16]C. L. LAWSON, R. J. HANSON, D. R. KINCAID, AND F. T. KROGH, Basic Linear Algebra
Subprograms for Fortran Usage, ACM TOMS, 5, 3, September, 1979, pp. 308-323, and Algorithm
539, pp. 324-325.

[17]B. T. SMITH, J. M. BOYLE, B. S. GARBOW, Y. IKEBE, V. C. KLEMA, AND C. B. MOLER, Matrix
Eigensystem Routines - EISPACK Guide, Vol. 6 of Lecture Notes in Comput. Sci., Springer-
Verlag, Berlin, 1974 (2nd ed., 1976, with additional author, J. J. DONGARRA).

[18]J. H. WILKINSON AND C. REINSCH, eds., Handbook for Automatic Computation, Vol. 2, Linear
Algebra, Springer-Verlag, New York, 1971.



