UCRL- 83259
PREPRINT

ON NUMERICAL METHODS FOR STIFF DIFFERENTIAL EQUATIONS--
GETTING THE POWER TO THE PEOPLE

A. C. Hindmarsh

This paper was prepared for presentation at
COMPCON 1980, February 25-28, 1980, San Francisco

December 1979

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

ON NUMERICAL METHODS FOR STIFF DIFFERENTIAL EQUATIONS --
GETTING THE POWER TO THE PEOPLE*

A. C. Hindmarsh

Lawrence Livermore Laboratory
Livermore, CA 94550

Introduction And Example

As recently as 1960, the commonly held per-
ception of ordinary differential equations (ODE's)
in practical applications was that almost all of
them could be solved with simple numerical methods
widely available in textbooks. Many still hold
that perception, but it has become more and more
widely realized, by people in a variety of disci-
plines, that this is far from true. The biggest
single reason for this is the recognition of
stiff ODE systems as a frequent and widespread
occurrence, and of methods that are effective for
stiff problems, but are not so simple. Stiff
systems are now known to arise commonly in chemi-
cal kinetics, structural and mechanical systems,
electronic circuits, and many other areas, and
these systems are being solved numerically as a
fairly routine matter with appropriate choices
of techniques and software, in a wide spectrum
of computing enviromments. As this recognition
was beginning to take place, however, two closely
related challenges presented themselves. One was
to investigate and extend the known classes of
numerical ODE methods., and in the process dis-
cover and identify, by way of mathematical
analysis, those that seem appropriate for stiff
problems. The other was to implement the ap-
propriate methods, using the growing technology
in computing machinery and associated software,
S0 as to make the power of the methods avajlable
to those with the problems to be solved. Al-
though efforts in both categories are continuing
at a strong pace, one class of methods, that of
the so-called BDF methods, was found quite early
to be effective on stiff problems, and its vari-
ous implementations have since become far more
successful than any others at bringing sophisti-
cated ideas to bear on the stiff system problems
faced by users at large. Following a description
of the stiffness problem and a brief glimpse of
BDF methods, what follows is a discussion of the
ways in which these methods have achieved this
success, and ways in which they and related ideas
might do a better job in the future of meeting
this challenge--of getting the power to the
people where stiff ODF's are concerned.

First it is essential to understand stiff-
ness itself. The essence of the phenomenon can
be illustrated with a simple example problem.
Consider the familiar LRC circuit, in which the
current I satisfies the ODE

LI +RI+1/C=0 1)

*Work performed under the auspices of the U.S. Dept. of Energy by
the Lawrence Livermore Laboratory under contract W-7405-ENG-48.

where the dot denotes differentiation with respect
to time t. By defining constants a = «fLC)
and 8 = 2 L/R (both having the dimensions of time),
we can rewrite the equation as
T+ 2i/8 + 1/a2 = 0. (2)
The general solution is
Ht) = Ay exp(-t/7y) + A, exp(-t/1,).

where A] and A2 are constants and the T; are the

roots of the quadratic equation

Tz - ZTaZ/B + u2 = 0.

T /a = o/ --\/(a / 8)2 -1= (TZ/G)_]

(a/8)% - 1. (3)

Assume now that o« > > 8. Then
T/e=20/8>>1, T(/a=8/2a<<].

The vy are the time constants of the system, in
that %hey indicate the time scales of the two ex-
ponential decay terms, independent of the initial
conditions. The long time constant, T, dictates
the time span over which any particular solution
will have to be given in order to be complete,
while the short one, 71, dictates the time scale
of the initial rapid response, or fast transient,
in the solution. To take a specific case, Fig. 1
shows the solution for the case

a/8 = 100, 1(0) = 0, 1(0) > o. (4)

Thus

Tz/a = afB +

'

\ ¢ + 4 + t
1905 705 15 © 10« 100a 1000a
Figure 1.

The fast and slow responses are clearly shown in
this semi-log plot.

The presence of a decay time constant that
is very short, relative to the total time span of
interest, is the defining feature of stiff prob-
Tems. Note that beyond the initial fast tran-

sient, this short time constant is not at all
evident in any particular solution curve, start-
ing at realistic values of I(0) and I{0). Yet it
is inherent in the problem at all times, in the
following sense: Given a particular solution I(t)
and any point t, > 0, the solution of the ODE
starting at values perturbed slightly from I(t,)
and I(to) will in general have a fast transient
at t,, on a time scale of the short time constant
T ; and then be smooth (on a scale of 7») there-
after.

To obtain a more general definition of
stiffness, first return to the ODE (2) and re-
write it as a first order system in the vector

y = (I,f)T, namely

. 0 1
y = 5) y = Ay. (5)
-ljes -2/B

For linear systems of this form, with any
matrix A, one can (almost always) write the so-
lution as & linear combination of exponentials
exp{Ait), where the values of X\ are the eigen-
values of A. If the equation is a stable ore,
these A will all have negative real parts, and
the positive quantities 7 ==1/Re(\) are the
associated time constants. (For the specific
case in (5), with o > 3, these values of + are
exactly those obtained before, in (3}.) Again,
the occurrence of widely separated values of the
= is characteristic of stiffness.

Now consider the initial value problem for
a general first-order ODE system,

y = fly.t). (6)

Here y is a vector of length N, and the independ-
ent variable t will be thought of as time, but
need not actually be. The Jacobian matrix of the
system is the N x N matrix of partial derivatives
of f.

ay.t) = Apt) ()
If x(t) and y(t) are two neighboring solutions of
(6). their difference z(t) is given roughly by the

0DE
2(t) = I(y(t).t) z(t). (8)

Thus an approximate local analysis leads to sys-
tems of the form z = Az. We therefore say that
the problem (6) is stiff if at least one of the
time constants v, given by T = -1/Re(\) with X an
eigenvalue of J(y,t), is very small compared to
the t range of interest. Since J and thus the =
can vary with t, and also vary as one changes the
particular solution y(t), one must qualify this
definition in various ways.

Complete formality here is of little value
to the scientist or engineer with a real problem
to solve. The fundamental question to ask is:

On the basis of at least a qualitative knowledge
of the physical processes being modelled by the
ODE system, is there a relatively fast decay
process included in the system? If so, the sys-
tem is most likely stiff. If intuition does not
give a determination, a pragmatic approach will.
If any of the classical textbook ODE methods, or
software packages based on one of the methods, is
attempted, and if the time step size At that must
be used in order to get decent answers seems in-

ordinately small when measured on a plot of the
solution, then the problem is most likely stiff.
Thus, for example, such a method applied to the
examplte problem (2)-(4) will require values of at
on the order of vy all the way through the prob-
lem, while the plot of the solution wogld suggest
using values on the order of 75 = 47107 7, after
the intial transient. Indeed the difference
between using an appropriate method and an
inappropriate one,on a stiff problem can easily
be a factor of 10% or more in the number of time
steps needed to finish the problem.

BDF Methods - A Glimpse

While 1 will not attempt to present any
stiff methods in any detail, it is useful to get
at least a glimpse of what they entail. Tw0
simple examples of methods for the general 0DE
problem (6) (initial value problem) will illus-
trate the centrel issues.

Consider first the simple linear problem
(5). If a linear change of variables is made in
y, the problem can be rewritten as two uncoupled
scalar equations, each of the form

¥y = Ay. (9)

The values of X are as before--the eigen-
values of A. The offending A is the one for
which = = -1/x = 7y is small, or \is negative
and large in magnitude, so consider only that
equation.

The simplest of all ODE methods is Euler's,
given by

Yo = Yno1 * hynays (10)
where the subscripts are time step indices, y,
approximates y(t,), h = t -t 1 is a constant
step size in t, and y, 4 denotes f(yno1s tp-1)-
For (9), the result is

Yo = (1 + hA)yny. o= (1 +ha)Tye.
Since the true solution is a decaying exponen-
tial, this Euler solution will be clearly useful
only if |1 + hAl < 1, or
h/7y < 2. (11)

For the case at hand, where B is small, this is
a prohibitive restriction.
The Backward Euler method, given by

Yp = Ypop T Yy (12)

is an implicit one in the sense that the formula
involves y_ Gn yn = f(yn,t)) on the right as

well as on the left side. For (9), the Backward
Euler solution is

-1 -n
Yp ° (1 - hy) Yp-1 In G (1-nx} Yo

Since 1 - hx = 1 + h/t > 1 for any choice of

h > 0, this numerical solution is qualitatively
correct for any h. For the general problem (6),
however, this benefit comes only with the cost of
solving an algebraic system for y, at each step.
As real problems tend to be complex, nonlinear,
and/or large in size, this cost can be quite sig-
nificant, and this aspect of the method receives
considerable attention in the various implementa-
tions. In contrast to what is commonly done in

the nonstiff case, it is not sufficient to use
simple functional iteration,

yn(m+]) = Yo + hf(yn(m)‘ tn)‘
starting from some guess yn(o {such as from
(10)). For the test equation (9) this becomes

Yn(m+1) =Yyt h>‘yn(m)'

(13)

By setting y, = (1-hA)']yn_] and rewriting the
above as

In(mt1) ~ Yn T m(yn(m) - yn)’

it is clear that this iteratior -onverges only
if [hA] < 1, again a prohibitivs restriction on
h, comparable to that in (11) for the ordinary
Euler method. Instead, an iteration related to
Newton's method, and therefore involving the
Jacgbian matrix (7) is generally used instead.
For general f, such an iteration involves a
sequence of linear algebraic systems of the form

(I_hd)(yn(m+1) - yn(m)) =

Yo-1 * M Wa(my th) = Ya(m): (14)

where I denotes the identity matrix, and J is
some approximation to J{y,.t,), held fixed
through the iteration sequence. This iteration
has the desirable property that if f is linear
in y, and J = af/3y. then one gets the correct
value for y, in one iteration. The two Euler
methods have only first order accuracy. That is,
in the limit of small h, the error at the end of
a fixed t interval is O(h). Methods of higher
order of accuracy are common, but relatively few
of them have the property (shared by the Backward
Euler Method) that is essential for stiff prob-
lems, namely that where the solution is smooth
the step sizes can be correspondingly large,
rather than constrained by the smallest time
constant in the system. One group of methods
that have this property is given by the Backward
Differentiation Formulas, or BOF's. The BDF of
order q is given by
q

Ya 'iZ] @y Ypi ¥ P8y Y, (15)
where the a; and 8o are constants (depending on
q). (The name BDF comes fram looking at (15) as
a formula for Yy given y, and its past values
Yn.j-) The case g = 1 is identical to (12), so
tnese give generalizations of the Backward Euler
method of orders q =1, 2, At high orders
the desirable properties of the BDF's degenerate,
and tge implementations discussed below all limit
q to 5.

The formula (15), as written, assumes h to
be fixed. However, for most problems it is high-
ly advantageous to vary h during the problem.
This can be easily accomplished by approximating
the needed past values (the y,_; in (15)) spaced
at intervals of the new step size h' by way of
the interpolating polynomial associated with the
existing data spaced at_the step size h.

An alternative approach' is to use a variable-
step analog of (15) to start with,

q .
Yn = .Za @ni Yn-i * Mn PnoYn» (16)
i=

in which the a and p coefficients depend on the
spacing of the t _; (i =0, ..., q), and this
spacing is arbitrary. In both cases, a feature
of the implementations that is nearly as valuable
as the varying of h is the varying of the order
g. Both are chosen dynamically in an attempt to
maximize the efficiency of the numerical solu-
tion.

Software Packages

The Backward Differentiation Formulas, to-
gether with known techniques for solving the
associated implicit system of algebraic equa-
tions, for selecting the step size h, and for
selecting the order q, have been made available
to the computer user community in the form of
software packages since about 1968. Such
general-purpose ODE solvers have proved to
provide a highly effective means of making the
power of these methods available simultaneously
to users in all disciplines in which stiff prob-
lems arise. Moreover, they greatly simplify the
process of replacing old solution technigues with
new and better ones as they come along, because
the use of this software imposes a separation of
the problem being solved from the method used to
solve it.

Two basic packages using BDF methods are
available for general use on stiff systems.

These are the GEAR package, which is based on an
earlier code called DIFSUB written by C. W. Gear,
and EPISODE, which is newer. Although these two
solvers look nearly identical to the user, they
differ radically internally, in that GEAR uses
(15) with step changing by interpolation while
EPISODE uses the variable-step generalization of
the BDF's in (16). In solving stiff systems,
both use a modified Newton iteration which gener-
alizes (14) and involves a matrix

P=1- hBOJ C(or 1 - hanoJ). (17)
In carrying out the iteration, both GEAR and
EPISODE assume that J is a full {(dense) N x N
matrix. (More will be said shortly on alter-
native assumptions.)

GEAR and EPISODE are written in reasonably
portable Fortran, as demonstrated by the fact
that they are currently in use at hundreds of
installations on a wide variety of machines. In
each case, the use of the solver requires the
user to write a subroutine defining the right-

 hand side function f(y,t), and a calling program

which communicates with a driver subroutine in
the solver package. The latter call provides the
value of N, the initial conditions, an error
tolerance parameter (two in the case of EPISODE),
a method option flag, and the value of t at which
answers are desired. The solver returns answers
as desired (or a flag indicating why it could
not), and repeated calls are to be made to con-
tinue the solution. As an option, the user may
also provide the Jacobian values J(y.t) needed in
(17) by supplying another subroutine, or the
solver may be made to generate these internally
by means of difference quotients.

Another feature of these solvers that users
have found extremely useful is an option for non-
stiff systems. This option selects variable-
order implicit Adams methods instead of BDF's.
and functional iteration ((13) or its generali-
zation to higher order formulas) instead of modi-
fied Newton iteration. Thus a user who has both
stiff and nonstiff problems can select a suitably
efficient method for either, simply by his choice
of the method flag parameter.

For problems that demand frequent and con-
siderable changes in step size, e.g., because of
waves or spikes in the solution, the EPISODE
package is a more efficient and more reliable
choice than GEAR. For problems with fairly
smooth solutions, both will do, but GEAR tends to
have the greater efficiency.?

As mentioned at the beginning, stiff systems
arise in a variety of applications. One type of
application that is responsible for a large frac-
tion (perhaps half) of the stiff systems being
solved at present has received much special
attention, This is the area of time-dependent
partial differential equations (PDE's), or
coupled systems of such equations, in which the
spatial derivatives have been discretized in some
way, leaving a large system of ODE's in time.
This procedure, coupled with the use of an appro-
priate ODE solver, is referred to as the numeric-
al method of lines, and has been developed for a
variety of spatial geometries and discretization
techniques. [t poses a challenge to 0DE solvers
because the resulting systems tend to be quite
large, as well as {usually) being stiff and non-
Yinear. Meeting this challenge has led to a se-
quence of variants of the GEAR and EPISODE
solvers, which are also widely used.

The easiest category of PDE's to which this
approach applies is that of systems of diffusion-
like equations in one dimension. Here, any of
several simple finite difference treatments of the
spatial derivatives (and of the boundary condi-
tions) Teads to an ODE system y = f in which the
Jacobian J is tightly banded about the main dia-
gonal. Two variant solvers, called GEARB and
EPISODEB, were written to take advantage of this,
with great savings in storage and run time. These
two packages, especially the older one, GEARB, have
been used extensively, both directly by users and
indirectly as a part of automatic general-purpose
PDE packages. If instead one uses collocation,
finite elements, or the Galerkin method for the
space variable, the result is an implicit ODE

system A(y,t)y = g{y.t), where A 7s an N x N matrix.

Here A and 3g/dy are again banded, and two other
variants, GEARIB and EPISODEIB, solve such systems.
They treat the problem in the form given, which

is much more economical than writing & =f= A’]g
and using one of the other solvers. GEARIB {modi-
fied slightly) is used quite successfully in_a
general purpose 1-D PDE solver called PDECOLY,
which uses collocation and polynomial splines to
treat the spatial variable.

Two other variants of GEAR have been written
with -sparse Jacobian structures in mind. One,
called GEARS, aliows for a completely general
sparse structure, and uses direct sparse linear
system solvers. Another, called GEARBI, is for

the case of a blocked Jacobian structure, and
uses a block-iterative method (block-SOR) for the
linear systems. The block structure is one that
occurs frequently in 2-D PDE systems treated by
finite differences on a rectangular mesh.

Further details of these solvers and their
uses can be found in Ref. 4 and literature cited
there.

The Impact of the Hardware Enviromment

The computing environment in which stiff ODE
systems are solved has a significant impact on the
optimal choice of the means by which they are
solved. This is sometimes due directly to the
finite wordlength of the computer, sometimes to
the nature of the memory components, and some-
times to the nature of the languages and support-
ing library software available.

To start with, the computer wordlength and
associated roundoff error properties play & dir-
ect role in 1imiting the accuracy and degree of

stiffness for which a numerical solution can be
obtained. Specifically, suppose BDF methods are
used on a machine with unit roundoff u. Beyond
the rapid transient, the step size h is large
compared to the smallest time constant in the
system, =, and the degree of stiffness can be
quantized by the stiffness ratio S = h/ry. (Some
definitions use the largest time constani in
place of h, but the two are comparable when h is
of reasonable size for the long-term solution.)
Now the algebraic system that must be solved to
get y, from past data can be shown to be ill-

conditioned when S is large, in the sense that

small perturbations in the data correspond (in
the worst case) to large perturbations in the
solution y_--larger by a factor roughly equal to
S. Thus tﬂe computed value of y, must be con-
sidered to have errors on the order of Su {meas-
ured in whatever nom 1is appropriate). On the
other hand, the implementations of these methods
control the error comitted on taking one step
(or an estimate of that error) to be less than
some user-supplied tolerance parameter € (again
measured in an appropriate norm). Thus the
problem is unlikely to be numerically solvable
(with reasonable efficiency) unless Su is well
below €. Given a problem which exceeds this
1imit, the observed behavior of any of the
solvers described above is for the step size h to
fail to reach the values expected of it, in termms
of the smoothness of the long-termm solution. A
solution will usually still be obtained, but at
the cost of restricted step sifss. Thus. for
example, a problem with S = 10+Y (very stiff) is
unlikely to be solvable efficiently on a machine
having 8 significant decimal digits in single
precision, and on a 14-digit machine it can
probably be solved (efficiently) only with a few
digits of accuracy.

On the basis of these considerations, most
of the various ODE solvers listed have been pre-
pared in both single and double precision ver-
sions in order to meet the variety of environ-
ments. {In the EPISODE family, the two versions
of each solver are combined into one source,
using comment cards, special flags, and a con-

verter routine, also in Fortran, which shifts the
flags so as to change the source from single pre-
cision to double or vice versa.) As a general
rule, the double precision version is recommended
when solving stiff problems on machines having 9
or fewer significant decimal digits in the single
precision floating point arithmetic.

At LLL and elsewhere, the memory configu-
ration on the CDC 7600 machines has impacted the
stiff system solvers in at least one instance.

In order to handle very large systems (N > 14000)
arising from coupled kinetics-transport PDE sys-
tems in two dimensions, the GEARB] package was
rewritten so as to use the Large Core Memory
(L€M) for some of the large work arrays. The
resulting solver, called GEARBIL, copies data
between LCM and the more rapid-access Small Core
Memory in large blocks for maximum efficiency.

The move toward pipeline machine archi-
tectures has affected the ODE solvers considera-
bly. On the 7600, a library of fast vector
operation modules called STACKLIB (using stack-
contained loops wherever possible), together with
vector ex'»nsions to the Fortran language, were
developed in order to simulate vector hardware
instructions on the CDC STAR-100 computers.
Serendipitously. they also improved the efficien-
cy of codes on the 7600 considerably. The GEAR
package was therefore rewritten to take advantage
of these features. The result, GEARV, does in
fact run faster for large problems, but not dra-
matically for stiff problems because the solution
of the linear algebraic systems {done by elimi-
nation in GEAR) does not lend itself well to
pipeline organization. A separate version of
GEAR, called GEARST, wes written for the STAR-
100, but for stiff problems it is slower than
GEAR on the 7600, for the reason given above.
The GEAR package has also been successfully run
on the CRAY-1 computer with virtually no alter-
ations.

Future Developments

In the coming years, the computational power
available to users with difficult stiff ODE prob-
lems is likely to change in several respects.

New discoveries in mathematical techniques, more
powerful and more versatile hardware, and better
ways of bringing these two areas together will
all play valuable roles.

In the area of mathematical research on
numerical methods, many opportunities are evi-
dgnt, of which I will mention only one. The non-
Tinear algebraic system problem resulting from
each step with a BDF method is in principle
amenable to a variety of techniques for solving
such systems, one of which is the modified Newton
scheme now used. More exotic choices, especially
ones that take advantage of certain structural
features in the system, are being studied, and
others will no doubt be discovered. Even with
the modified Newton choice, greater economy (in
both storage and time) in the solution of the
linear system at each iteration will be possible
2s new methods for structured linear systems are
developed.

The effect of the hardware environment on
the choice of numerical method has been and will

be very important. This is exemplified by the
case of tridiagonal matrix solvers on pipeline
and parallel machines, where timing comparisons
on the 7600 and STAR-100 caused renewed interest
in methods previously discarded.?

The current advances in the power and com-
plexity of integrated circuits is bound to impact
the ODE area. In the forseeable future, however,
the role of integrated circuit modules is likely
to be limited to subtasks within ODE algorithms,
rather than entire algorithms, because the state
of these algorithms is still very fluid at pre-
sent. Thus hardware modules for tasks such as
solving linear systems could be very beneficial
to the performance of stiff system solvers, as is
currently demonstrated by the substitution of
hand-coded assembly language modules for Fortran
routines. Such benefits would of course require
that the integrated circuit modules be accessible
from the high-level language (e.g., Fortran) in
which the 0DE solver itself is written.

Finally, there have been and will be efforts
made to formulate standards for ODE solvers. A
tentative standard has been proposed for the user
interface (the communication between user and
solver) of Fortran ODE solvers. If and when
achieved and adopted widely by the authors of
these solvers, this will greatly ease the burden
users now bear in facing a variety of solvers
with widely differing call sequences, etc.
fventually, standards for the internal structure
of ODE solvers are also likely. This will have
the effect of identifying standard subtasks com-
mon to many solvers, for which fast modules
(hardware or software) would be well worth
building.

References

(3] G. D. Byrne and A. C. Hindmarsh, “A Poly-
algorithm for the Numerical Solution of
Ordinary Differential Equations," ACM-Trans.
Math. Software, 1 (1975), 71-96.

[2] G. D. Byrne, A. C. Hindmarsh, K. R. Jackson,
and H. G. Brown, "A Comparison of Two ODE
Codes: GEAR and EPISODE," Computers & Chem.
Eng., 1 (1977). 133-147.

[3] N. K. Madsen and R. F. Sincovec, "Algorithm
540. PDECOL, General Collocation Software
for Partial Differential Equations,” ACM-
Trans. Math. Software, 5 (1979). 326-351.

[4] A. C. Hindmarsh, "A Collection of Software
for Ordinary Differential Equations."” in the
Proceedings of the ANS Topical Meeting on
Computational Methods in Nuclear Engineer-
ing, Williamsburg, VA, April 23-25, 1979;
also available as LLL Report UCRL-82097.

{5] G. H. Rodrigue, N. K. Madsen, and
J. 1. Karush, "0Odd-Even Reduction for Banded
Linear Equations," J. Assoc. Comp. Mach.
26 (1979) 72-81.

(6] A. C. Hindmarsh, "A Tentative User Inter-
face Standard for ODEPACK," LLL Report
UCID-17954, October 1978.

NOTICL

This report was prepared as an account of work sponsored by the United
States Guvernment. Neither the United States nor the Uaited States
Department of Energy. nor any o their employees, nor any of their
contractoss, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
decuracy, completeness or usetulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy 1o the exclusion of others that may be suitable.

Technical Information Department - Lawrence Livermore Laboratory
University of California « Livermore, California 94550

