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ABSTRACT

This is an informal preliminary report, on a study of a matrix-free method
for solving stiff systems of ordinary differential equations (ODE's). In the
numerical time integration of stiff ODE initial value problems by BDF methods,
the resulting nonlinear algebraic system is usually solved by a modified
Newton method and an appropriate linear system algorithm. In place of that,
we substitute Newton's method (unmodified) coupled with an iterative linear
system method. The latter is a projection method called the Incomplete
Orthogonalization Method (IOM), developed mainly by Y. Saad. A form of IOM,
with scaling included to enhance robustness, is studied in the setting of
Inexact Newton Methods, and implemented in a way that requires no matrix
storage whatever. Tests on several stiff problems, of sizes up to 5000, show
the method to be quite effective, and much more economical, in both
computational cost and storage, than standard solution methods.
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l. Introduction

The numerical solution of large stiff systems of nonlinear ordinary
oifferential equations (UDE's) requires methods for solving systems of
nonlinear algebraic equations. A Newton-like method is often employed to
solve the algebraic equations, and this generates a sequence of linear systems
of equations to solve at each time step. The solution of these linear systems
often makes up most of the work involved in the integration of the ODE's. 1If
direct methods are used to solve the linear systems, then most of the required
core memory is for the storage of the Jacobian matrix.

We consider here what we feel is best called a matrix-free method for the
solution of these linear systems. In [5], Gear and Saad proposed the use of a

Krylov-space projection method known as the Incomplete Orthogonalization

Method, or IUM. The IOM algorithm is an iterative method for the solution of
a linear system, and as will be seen below, does not require the storage of
the coefficient matrix in any form. Its usefulness comes from the fact that
the convergence of the sequence of approximations to the solution of the
linear system is fastest in the dominant subspace (i.e., in those components
corresponding to the eigenvaiues in the outermost part of the spectrum of the
coefficient matrix). This is a desirable feature in the context ot solving
stiff systems of ULE's by multistep or multivalue methods, since normally the
predicted value of the solution at a time step (which is given by an explicit
metnod) nas its largest errors in the stiff components. These errors are then
damped out in the first few Newton corrections since the IOM algorithm solves
for these components the most accurately. See Saad [6], and Gear and Saad [5)

for a more detailed discussion of the convergence properties of the IOM

algorithm.



In 5], Gear and Saad discuss the implementation of the 10M algorithm into
the Newton iteration and present some preliminary results. There, however, no
analysis of the resulting Newton-like iteration scheme is presented. Here we
view the incorporation of the IOM algorithm into the Newton iteration as an

Inexact Newton Method, a class of methods in which the linear systems in the

Newton iteration is solved only approximately. The advantage of this
viewpoint is that it lends a theoretical base upon which to build the
incorporation, at the same time suggesting how that incorporation might be
done. For a discussion of Inexact Newton Methods, see Dembo, Eisenstat and
Steihaug [1]. We prove below a generalization of a result in [1], relaxing a
condition there on the norm of the residuals in the approximate solutions of
the linear systems. Tnis result will provide a partial basis for the modified
I0M algorithm presented later.

This is an informal preliminary report. The remainder is organized as
follows: In Section 2, we introduce the ODE system and algebraic systems to
be solved, give some background on Inexact Newton Methods, and prove the above
mentioned resuit. Then in Section 3, we give some background on and introduce
a scaled version of the 10M algorithm, denoted SIOM. The implementation of
the SIOM algorithm into the general purpose ODE solver LSODE [3] is discussed
in Section 4, and test results on three problems are teported in Section 5.
Finally, in Section 6 we conclude with a discussion of our results and some

suggestions for future work.



2. Stiff ODE Systems and Inexact Newton Methods

We consider here the numerical solution of the ODE Initial Value Problem

(2.1) y = f(t,y), y(to) = Yy

where the aot uenotes d/dt and y is a vector of length N. The Olt in (2.1) is
assumed to pe stiff, and we will use the popular BOF (Backward Differentiation

Formula) methoos to solve it. Tnese methods have the general form

q L] .
(2.2) Y, = j:l %Yo +hBy., Y, = F(L,,y,) s

where q is the method order. The BOF methods are implicit and hence at each

time step one must solve an algebraic system

(2.3)  0=F (y) =y -hBflt,y)-a

q
= L oa, . 5 >0 .
°n Ty ey %

n ’

ln many cases, (2.3) is solved using a modified Newton itertion scheme,

where a preciction yn(U) is formed explicitly, with corrections given by

(z.4) Pnsn(m) -Fn(yn(m)) ,

yn(m+1) yn(m) + sn(m) .

Here Pn is an approximation to the Newton matrix aFn/Byn =1 - hBDJ,
where J = J(tn,yn) = af/ay(tn,yn). P is held fixed for the iterations

and also held fixed over several time steps. The system (2.4) is typically



solvea by performing an LU decomposition of P (at the time it is formed)
and using that for all iterations (on all steps) until a decision is made to
reevaluate J.

The particular class of problems of interest here is such that most of the
work required for the integration is in performing the linear algebra
associateo with (2.4). Furthermore, much of the core memory needed in the
integration is used for the storage of the matrix Pn and its LU
factorization. (The latter is usually overwritten on Pn‘) For large
problems in which the number of unknowns is on the order of several thousand
or more, storage considerations may be prohibitive on many computers. Thus,
for this class of proolems, any method which can approximately solve the
system in (2.4) and also reduce the core memory reqguired, merits

investigation. The Incomplete Orthogonalization Method (IOM) proposed by Gear

and Saao |5] is such a method, which we will view here from a somewhat
oitferent perspective than that in [5].

The 10M algorithm itself is a method (described in more detail below) for
the approximate solution of a linear system of equations

AXx = b,
where A is an N x N matrix, and x and b are N-vectors. The use of the IOM
algorithm in the solution of the nonlinear system (2.3) gives rise to a method

for solving (2.3) which is more properly viewed as an Inexact Newton Method in

which the step of solving the system
P sn(m) = —Fh(yn(m))
is replaced by one of approximately solving the system
] !
(2.5) Fn(yn(m)) sn(m) = —Fn(yn(m)) y Fo= F /3y,
which is the linear system one obtains if (unmodified) Newton's method is used

to solve (2.3).



Consider a general algebraic system problem, F(y) = 0, for which the exact
Newton step s is given by

F'iy) s = -F(y).
From Dembo, Eisenstat and Steihaug (1], an Inexact Newton Method for this

problem has the following general form:

Set y(0) = an initial guess
For m = 0,1,2,... until convergence:
Fina (1n some unspecified manner) a vector s(m) satisfying
(2.6) F'iy(m)) s(m) = -F(y(m)) + r(m)
Set y(m+l) = y(m) + s(m) .

The residual r(m) represents the amount by which s(m) fails to satisfy the
Newton equation (2.5). It is not generally known in advance, but is the
result of some inner algorithm which attempts to solve (2.5) exactly but does
not. In order to guarantee convergence of the scheme, one must demand some
auxiliary conditions on the residual r(m). In [1], it is shown that if

(2.7) e(m) 1l < IF(y(@)n, m=0,1,2,... ,

where 0 <n <m <1, then the sequence of iterates {y(m)}

converges to a true solution of F(y) = 0 linearly, given that the initial
guess y(0) is close enough. Here Hell stands for any norm on RN,

For the present context, where actual convergence of the iterates is not
necessary, and the cost of obtaining them is high, the condition (2.7) is
overly restrictive. Thus it is of interest to find out how much one can relax
(2.7) ana still obtain enough accuracy in the approximate solution y(m) to

Yo The following is a result along these lines.



N, gN be a mapping such that

Theorem 2.1: Let F: R
(2.8) there exists a y* in RN with F(y*) = 0;

(2.9) F is continuously gifferentiable in a neighborhood of y*; and
(2.10)  F'(y*) is nonsingular.

Let y(m) be a sequence generated by an Inexact Newton Method: y(Q) is an
initial guess and for m = 0,1,2,..., we have

(2.11)  F'(y(m)) s(m) = F(y(m)) + r(m) , y(m+l) = y(m) + s(m) .

Then there are positive constants € and K (depending only on F) with the

0
following property: For any positive numbers e < & and § < Keg,
whenever Iy(0) - y*ii < g, and the residuals r(m) in (2.11) satisfy
lir(m)!l < & for all m, then all the iterates y(m) exist and satisfy
ly(m) - y*ll < e and

lim sup Iy(m) - y*ui <k-1§ .

m+ o
Proof: First define p = IF'(y*)H and A = lF'(y*)'lH, and a new
norm lyl, = IF ' (y*)yll. Then we have
(2.12) A"yl < i, < wiyll for all y in R\,
Let y > U pbe chosen such that

b = 2yA(l + py) <1,

Next observe that by (2.8) - (2.10), there exists €, >0 so that

ly - y*il < € implies

(2.13)  WF'(y) - F'(y*)ll <y,

(2.14)  F () - Frys) T 2y, and

(2.15)  WF(y) - F(y*) - F'(y*)(y - y*)ll <y lly — y*iI ,
Next, for any y with iy - y*i < €y consider the vector given by
y =y +s, with F'(y) s = -F(y) + 1,

where nothing is specified as yet about the size of the residual r. We have



the tfollowing identity:

Friya)(y* - y*) = {1 + P (y»F ()7 - Friy=) )
{r + [F'(y) - F'(y*)I(y - y*) = [F(y) - F(y*) - F'(y*)(y - y*)1}.
Taking norms and using (2.12) - (2.15), we then obtain

Iyt - y*i, < L1+ 1 Gy nelEr (y) T - Fr () T
oLnrli + WF'(y) = F'(y®)lielly - y*I + IF(y) - F(y*) - F'(y*)(y - y*)u]
< (1 + wyUicti + 2ylly - y*i)

iyt -y < AL+ py) (Tl + 2ylly -y,
or
(2.16) My - y*ll < AL + uy)lizh + bly - y*iI .
We now want to insure that when lly - y*Il < e  and Il < Ke
(for some constant K), then lly+ - y*ll < € also. From (2.16), it is
clear that we will achieve that end if
A1 + py)Ke + be < g,
and so we define K by
K= (1-0)/[AM1+ up] .
Now for any positive € < e, and any y(0) with Iy(0) - y*lIl <€, a
sequence of inexact Newton iterates y(m) (m = 1,2,...) satisfying (2.11) with
iir(m) 1l < Ke is guaranteed to exist, and for each m, liy(m) - y*Il < e.
We can say more about the norms of the errors if we suppose further that
ir(m)1 < & for some constant & with ¢ <Ke. Then, setting
a=A1l+uyps,
(2.16) gives
Hy(m+l) - y*i <a + bliy(m) - y*i ,
ang by induction we obtain

m—l)

ly(m) - y*n <a{l + b + b2 + ... D + bmly(o) -yl



Thus, since b < 1,
ly(m) - y*Il <a/(1l - b) + b™e ,
ang finally
Lim sup iy(m) - y*I <a/(l - b) = K-1g .

m +» ®

QED

Suppose we consider the following Inexact Newton Algorithm:

Given ¢ >0 and 6 > 0, and an initial guess y(0),
1. Find (in some unspecified manner) s(m) satisfying
Friy(m))s(m) = -F(y(m)) + t(m) , ur(m)l < & .
2. Set y(m+l) = y(m) + s(m) .
3. If W (y(m+l))ll < g, then stop; otherwise set m + m+l and

go to Step 1.

Theorem 2.1 indicates that one should choose 6 << e in order to guarantee
the accuracy of the approximation y(m) for m large. Further, from the proof
we have

ny (m+l) - y*Il < a + bliy(m) - y*l
with U <D <1 ang a proportional to 8. This last inequality implies
that wnen
(2.17) a/ ly(m)-y*li << b ,

then we have

(2.18) iy(m+l) - y*i <(mm—?_—y;|-|- + b) Hy(m)-y*ll = bily(m) -y*l

Thus when (2.17) holds, the sequence is converging almost linearly. This
means that the smaller ¢ is the faster the "convergence" of the sequence

ty(m)} in the sense that (2.18) holds for more iterates.



3. The Incomplete Urthogonalization Method

The Incomplete Orthogonalization Method (IOM) given in [6] is an algorithm
for the approximate solution of the linear system
(3.1) Ax = b
where A is an N x N matrix and x and b are N-vectors. A brief description of
the method is given below along with some preliminaries, and the reader is
referred to (6] for more details.

By a projection method on the subspace K, = span {V,}, where

VL = [Vl""’VgJ is an orthonormal system in RN, we mean a method

whicn finds an approximate solution x, of (3.1) by requiring that

L

Xy € Kk ,

(g - ) Lvy (3= 1,2,.,0) .

(3.2)

Different choices of the subspace give rise to different projection methods.
Let Xq be an initial guess of the solution x* of (3.1) and set Ky equal

to the Krylov subspace

-1

K, = span {1y, Argy.eey ATy },

where Ig = b - AxO. Letting x = X * 2 then z must satisfy
(3.3) Az = 1y .
The Krylov subspace projection method then finds an approximate solution

z, of the true solution z* of (3.3) by requiring that

z, € KQ

(AZQ-I‘O) J—VJ (le,.-.,l) )
where V, = [Vl”"’vl] is an orthonormal basis of Kge (VQ
also genotes the N x & matrix with columns vi.) Letting zy =

v with Yy € Hm, we see immediately that Y must De

g

-10-



the solution of the linear system
T T.
VAV sy, - Vg =0,
ano so

X, = X, + Z

& U

pecomnes

%

- T -1 T
(3.4) X, =% * Vl(VZAVL) VRFO .

[
It is assumed throughout that the vectors Tys Aro,...,A er are

linearly independent so that the dimension of Kl is &.
we next present an algorithm given by Saad [6], which is an adaptation of
an earlier one due to Arnoldi. It constructs an orthonormal basis Vl =

T
[Vl""’Vg] of K, such that VlAv2 has Hessenberg form:

1. Compute Iy = b - on and set V] = rO/ltOIl.
2. fFor j=12,...,8do:

hJ+l,j = “wj+l“

Viel = *541M541, 5

Here (*,*) is the Buclidean inner product and li*ll the Euclidean norm.

Saad (cf. [6]) has shown that [Vl"'°’V£] is an orthonormal basis for

KR and that the matrix VLAVQ is the Hessenberg matrix HQ

whose nonzero elements are the hij defined in the above algorithm. It then

follows that the vector VL;O in (3.4) is equal to BV;vl = Bel,

where B = ligll, and e = (l,O,...,O)T e R, Therefore, the approximation

X is given by

_ -1
xl_xO + szlﬂl el .

-11-



Une practical consideration is the choice of %&. A very useful identity
in choosing % is the following equation for the residual norm:

. T
(3.5) b - Ax Il = hMl,k legy,! -
The relation (3.5) follows from the relation

T

AV = VoM * P, Va1
which can be derived from the algorithm. An interesting feature of the
relation (3.5) is that one does not have to form x, or y, in order to
compute Ilb - AxQH. 1f we perform an LU factorization of Hes

writing Hl = LU, and assume that no pivoting was necessary, then it can be

shown that

-1
(ifl Li)/ull ,

' ”’Ml,lb‘

where the Ei (i=1,...,41) are the successive pivots (the subdiagonal
elements of L). In general, one can show that when no pivoting has been

necessary for i € I, where I € {1,...,%11}, then

(3.6) h le

See (6] for more details.

The use of (3.5) to estimate the error Hb—Ale then leads to the

following algorithm:

Algorithm 3.1 (Arnoldi's Algorithm):

1. Compute Ty = b - Ax0 and set vy = rO/HrDH .

2. For &= l,2,...,£max do:

-12-



'3

(a) w ,
2+1 L i=1 if'i

h9r+l,9, = Ilw%_lll

Vel = W1 Ppal g
(b) Update the LU factorization of H, .
(c) lbe(3£)tocmmﬁepl=hwﬂqﬂeb£l=Ib—Axw.

(a) If p, <6, go to Step 3. Otherwise, go to (a).

3. Compute x, = X, + “ro“vgﬁ}}el and stop.

In the above algorithm, if the test on Py fails, and if & = Qmax
steps have been performed, then one has the option of either accepting the
final approximation X g1 OT setting Xg=Xg, and then going back to step
1 of the algorithm. This last procedure has the effect of "restarting" the
algorithm. We also note that due to the upper Hessenberg form of Hos
there is a convenient way to perform an LU factorization of Hy. by using
the LU factors of Hy 1+

In the solution of the stiff ODE problem, the nonlinear problem (2.3) has
the form
(3.7) Fly) =y - hBOf(t,y) -a=0,
where a is a constant N-vector, and so

Fliy) = 1= nB3Ge,y) , 3(E,y) = tt,y)
Since the problem (2.1) is stiff, the Jacobian J has at least one eigenvalue
with large negative real part. In the nonlinear iteration for solving (3.7),
we then want to consider solving

F'(y(m)) s(m) = -F(y(m))
by the IOM algorithm, and then set

y(mel) = y(m) + s(m) .

1%



The predicted value y(0) is obtained using an explicit method and hence will
have its largest errors in the stiff components. In the solution of a linear
system Ax = b using Algorithm 3.1, Saad [6] has shown that convergence of the
iterates Xy is fastest in the dominant subspace. Thus, the convergence of
the iterates xz(m) to s(m) ié fastest in the stiff components. This

result also suggests that a relatively small value of %hax may suffice in
Algorithm 3.1. 1In the testing reported below, we used lmax = 5.

In Algorithm 3.1, for & close to Rma , a considerable amount of the

X
work involved is in making the vector Vil orthogonal to all the previous
Vectors vy,...,vy. Saad [6] has proposed a modification cf Algorithm

3.1 in which the vector Vel is only required to be orthogonal to the
previous p vectors, Vepel? st Vg Egns. (3.5) and (3.6) then do

not hold excactly, but are still useful as estimates of the residual norm.

This leads to the following algorithm, denoted 10M:

Algorithm 3.2 (Incomplete Urthogonalization Method):

1. Compute I, = b - Ax0 and set vy = rO/HrOH .

2, For £=1,2,...% do:

max
L
(a) Woo1 = Avy - ifi hygvi » Njg = (AVQ’Vi) ,
o
i0 = max(1l, %-p+l) ,
Nger, 2 = Mo o
Vol = ¥ea1Mer,n

(b) Upgate the LU factorization of Hy.
T -
(c) Use (3.6) to compute p, = h£+l,EIERYlI = lip - Ax il .

(d) 1f p, <&, go to Step 3. Otherwise, go to (a).

x - + i, IV H-Ye  and stop.

3. Compute x 0 o'V

yl:

~1l4-



The remarks made after Algorithm 3.1 are also applicable here. In [6], Saad
compares Algorithms 3.1 and 3.2 on several test problems, and reports that
Algorithm 3.2 is sometimes preferred, based on total work required and run
times.

In the testing described below, we used scaled versions of Algorithms 3.1
ana 3.2. Suppose that insteaoc of the linear system Ax = b we want to solve an

equivalent problem that is more well-scaled,

~

AX =D

H

where A = U=1au, x = U-1x, b = D-lb, and U is a giagonal scaling matrix

relatea to the tolerance parameters in the ODE problem (2.1). In Algorithm

3.2 we then have

hjg = (Avg,vi)

Vol = Yea1’ Paile

If we define the vectors Vi and Wy by
Vi = Dvi ang w; = Dwi )
then we have
%
-1 -l -1 L~ -1
D wwu.— U “ADu Vg - L. illJ vy
1=1
0
or
Lo
Woep = AVE - X hpevs
i=i
0
where h, = (U_lAv D'lv ), and
i L2 i’
h = ID_lﬁ i, v =w, ./h
l, £ 71 Tl 2417041,

~15-



The matrix H, is now replaced by ﬁl = (ﬂi j). Hence, the effect of the
?

scaling matrix U is to introduce the use of a weightea inner product and

associated norm into the algorithm. The result is the following algorithm,

denoteg S1uM:

Algorithm 3.3 (Scaled I0M):

_ _ -1
1. Compute Ty = b - AxD and set vy = rO/HD rOH .

2. For &= 1’2""’2max do:

Q’ ~
f‘i higYi s
o

) ~ 1 -1
(a) Woel = Avy - . hig = (D Avy,D Vi) )

max (1, %-p+1)

[
1

~ -1
hml,k = 1D wﬂd‘l” ’

/

Vel = Y21 Mu, 0

(0) Upaate the LU factorization of ﬁx .
(c) use (3.6) to compute Py = HD'l(b - Axg)n

(a) If p, <8, go to Step 3. Otherwise, go to (a).

1 1

3. Compute Xg = %Xg + 1D ron v2 H2 & and stop.

we remark that the scaling matrix D is determined automatically by LSODE from
user-supplied tolerances, and that it can change from one time step to the
next. As indicated earlier, the vector ﬁilel is computed by

generating an LU decomposition of ﬁk (by successive updating as &

~16-



varies), followed by back-substitution. Here ﬁ@ is treated as a general
Hessenberg matrix, even though it is actually banded (with a lower
half-bandwidth of p-1), because its size is too small to gain any efficiency

advantage from the band structure.

4. Algorithmic Implementation

The LSUDE package [3] was modified to perform the solution of the linear
system (2.5) using the 10M algorithm. In order to describe precisely the
algorithm for this, we must first outline the structure and overall algorithm

of LS0UE, to the extent that this is relevant here.

4.1 The Unmodified Algorithm

Aside from several auxiliary routines of secondary importance, the
structure of LSODE (unmodified) is shown in Fig. 1, with the dashed line
connections ignored. Subroutine LSODE is a driver, and subroutine STODE
performs a single step and associated error control. STODE calls PREPJ to
evaluate and do an LU factorization of the matrix Pn which approximates
I—hﬁOJ, and subsequently calls SOLSY to solve the linear system (2.4).

Both of these routines call LINPACK routines [2] to do the matrix operations.

Within STODE, the basic algorithm for time step n, in its unmodified form,
is as follows:

(1) Set fiag showing whether to reevaluate J.
(2)  Preaict y_(0).

(3) Compute f(tn, yn(O)); set m = O.

(4) Call PREPJ if flag is on.

(5) Form Fn(yn(m)).

~17-



(6) Call SOLSY and correct to get yn(m+l).
(7)  Update estimate of convergence rate constant C, if m > 1.
(8) Test for convergence.
(9) If convergence test failed:
(a) Set m + m+l,
(b) If m < 3, compute f(tn,yn(m)) and go to Step (5).
(c) If m = 3 and J is current, set h +h/4 and go to Step (1)
(redo time step).
(d) If m = 3 and J is not current, set flag to reevaluate J and go
to Step (3) (redo time step).

(10) If the convergence test passed, update history, do error test, etc.

In algorithm Step (1) above, the decision is made to reevaluate J (and redo
the LU factorization of P = I - hBOJ) if either

(a) 20 steps have been taken since the last evaluation of J, or

(b) the value of hBO has changed by more than 30% since J was last

evaluated.

In algorithm step (7), the iterate difference sn(m) = yn(m+l) - yn(m) is
used, together with sn(m-l) if m > 1, to form the ratio UELR =
Hsn(m)n/nsn(m—l)u , and C is updated to be the larger of .2C and
UelR. C is reset to .7 whenever J is evaluated. The norm is a weighted
root-mean-square norm, with weights determined by user-supplied relative and
absolute tolerance parameters RTOL and ATOL. (These weights correspond to the
diagonal scaling matrix D referred to in Sec. 3.) The convergence test in
step (8) requires the product Hsn(m)u-min(l,l.SC) to be less than a

constant which depends only on g. This is based on linear convergence, with

-18-



LSODE

STODE
PREPJ SOLSY
\
\ / \
\
LINPACK \
User's \
routines \
for f and
(optionally) | e —— =T SIOoM
of/fey P T
/,
~
-~
-~
-~
-~
-~
_ -~
User's _ -~
routine P
for -~
(af/dy)v
(optional)

Fig. 1. Simplified overall structure of the LSODE package.

-19-



the idea that Clsn(m)n is a better estimate of the error in yn(m+l)
than Hsn(m)n is. Algorithm step (10) includes step and order selection
for the next step (if the error test passed) or for redoing the current step

(if it failed), but the details of that are not relevant here.

4,2 The Modified Algorithm

In the modified algorithm, subroutine SOLSY calls a driver routine SIOM
which performs the solution of the linear system (2.5) using the scaled
version of the IOM algorithm given in Algorithm 3.3. Subroutine SIOM then
calls user-supplied routines for evaluating f and the operation of the
Jacobian J times a vector v, as indicated by the dashed lines in Fig. 1. It
also performs the looping and convergence test for the SIOM iterations. We
describe below the essential features of our implementation of the SIOM
algorithm into the LSODE package.

First, we note that in Algorithm 3.3 the matrix A is not needed
explicitly, and only the action of A times a vector v is necessary. Since

A = F;(yn(m)) =1 - hBJ with J = %g(tn,yn(m)),
we can approximate Av by first using the difference quotient
(4.1) v 2w = [f(tn,y+ov) - f(tn,y)}/o
{where y denotes yn(m)) for a suitably chosen scalar ¢, and then setting

Hy =y - hﬁow .

Note that if f(tn,y) has been saved, then this only requires one additional
f evaluation.

The choice of ¢ is limited by roundoff error if ¢ is too small, in
that the two values f in (4.1) may be numerically equal in some components
while the true components of Jv may not be zero. Also, o is limited by
truncation error if ¢ is too large, in that f may be nonlinear between y and

y + ov, and the difference quotient (4.1) may be inaccurate as a result. In
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Algorithm 3.3, Jv is needed for vectors v which are normalized according to

N VI v = v = 1 ,

where llell is the weighted root-mean-square norm, I+l is the

WRMS

Euclidean norm, and D = diag(dl,...,dN) is the scaling matrix given by
03 = ly,p 3! *RTOL; + ATOL;  (i=1,...,N)
RTOLi and ATOLi are user-defined tolerances. In the scaled space, we have

; = D_ly and v = D_lv , and we can form the equivalent problem in terms of

-

'f"(tn,J) - D'lf(tn,DJ) and 3 =L - plap |

Q
<1|

Tne corresponding value for Jv is

W = [f(tn,y+0v) - f(tn,y)]/o
-1 -1
= (U f(tn,y+ov) -D f(tn,y)]/o
= U-lw .
Note that Ivi = ID~Lvi = 1 here.

The test on local error in LSODE requires that the local error vector e

satisfy leloyg <1, and we can expect liell =] for the

WRMS
step sizes selected. This means that e = D'le satisfies

el = VN ||§|th = N llelloys =N .

R

Tne vector e can be regarded as a small correction to ; and so its size is
about at the user's tolerance level. Sg it is likely that f is reasonably
linear petween ; and ; + é, but unlikely that e is so small as to make f hard
to resolve due to roundoff between ; and ; + €. Therefore, a reasonable

criterion on ¢ is to make ov ang e have the same norm (Euclidean norm).
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This leads to
aivil = liell = A,

or
o=/N.

As an alternative to using (4.1), it is easy to give the user the option
of supplying his own routine for the computation of Jv. This has been done
in the experimental version of LSODE containing SIOM.

we elected to implement Algorithm 3.3 without the restart feature. This
was due mostly to storage considerations and simplicity. The convergence
parameter 6 = .05 was chosen so as to ensure that the errors in the
solution s_(m) of (2.5) (as measured in the norm ID~Le1) were much
below the requested accuracy in the solution Yne (To be precise, since we
are not using the restart feature of the IOM algorithm, we cannot always
guarantee that the errors in sn(m) are insignificant. However, in the test
results given below, these errors were apparently of no consequence.) This
choice of & also ensures essentially linear convergence of the Newton
iteration, as was shown in Section 2.

Finally, we note that no nonzero guess to the solution of the linear
system (2.5) is readily available, and so in Algorithm 3.3, we take xg =
0. Tnis means that the convergence test D_l(b - sz) < ¢ is easily
appliea also for & = 0. This test is mage in Step 1 of Algorithm 3.3, and

if it passes, Xg = 0 is accepted as the approximate solution.
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The modified version of the basic algorithm in STODE is then as follows:
(1) Predict Y, (0)
(2) Compute f(tn,yn(o)); set m = 0, and reset the convergence rate
constant C to 0.7.
(3) Form F_(y_(m)).
(4) Call SOLSY and correct to get yn(m+l) (by Algorithm 3.3).
(5) Update estimate of convergence rate constant C, if m > 1.
(6) Test for convergence.
(7) 1f the convergence test failed:
(a) set m « m+l.
(b) If m <3, compute f(tn,yn(m)) and go to Step (3).
(c) If m =3, set h « h/4 and go to Step (1) (redo time step).

(8) If convergence test passed, update history, do error test, etc.

The comments regarding steps (7) ana (10) after the unmodified algorithm are
still relevant for steps (6) and (8) here, respectively. The user has the
option to specify the size of the parameters p and zmax in Algorithm 3.3
(which affects the size of the core memory required). In the limited testing

reported below, these parameters were both taken equal to 5.

4.3 Algorithmic variations

A number of variations on the above algorithm using SIOM are possible,
and several are given in [5] and [6]. We tested some such variations, where
it seemed they might result in improvements in performance. Although each
has a plausible argument in its favor, none of them resulted in any actual

gains in efficiency. Nevertheless, for the sake of completeness, we describe

here the variations that were tried.
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First, it is well known that the Gram-Schmidt orthogonalization process,
represented by Step 2(a) in Algorithm 3.1, can potentially produce bad
answers because of roundoff error. To avoid this without a major redesign of
that part of the algorithm, we simply substituted double precision for single
precision (on the Cray-1 computer) in the computation of the scaled inner

1

products (D—lAvg,D— Avi) in Algorithm 3.3 and also in the computation of the

W there. In the tests done, the numerical results were no different,

1

suggesting strongly that roundoff had in fact not been a problem in single

precision, while the run times were much larger, by as much as a factor of 3.
Unce a set of basis vectors vy is computed on any given Newton

iteration, within any given time step, various possibilities come to mind for

reusing this basis in later Newton iterations. The considerable effort

required to produce the vectors and the corresponding Hessenberg matrix

ﬁl would then be avoided some of the time. The most immediate idea is to
save the basis from the first Newton iteration on a given step and reuse it
on the subsequent Newton iterations in the same step. However, it is not
hard to see that this will be of little or no benefit, for in the limiting
case that f(t,y) is linear in y, this strategy (with Xg = 0) produces a
correction of zero on the second and subsequent iterations, because the
residual vector is already orthogonal to the basis vectors.

An idea that does make sense is to save a basis computed on one time step
ana reuse it on subsequent steps. This is motivated by the same fact that
explains the success of mogified Newton iteration, namely that
A=1- thJ is subject only to gradual changes from step to step,
arising from J = af/9y, at least as long as the scalar hBO is fixed.

The basis {vi} computed in the first Newton correction on step n,

producing yn(l) from yn(O), is likely to be much more useful on
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subsequent steps than that from any of the later Newton corrections in step n
(if any), because it reflects the error in the prediction yn(O), which
presumably has a larger error than any other yn(m). This all suggests (and
tests confirmed) that the reuse of a basis generated on step n should be
considered on step n+l only when the following conditions all holad:
(a) step n only required one Newton iteration;
(b) the SIOM algorithm on step n produced a basis of & > 1 vectors
(i.e. it did not terminate with Xg = 0); and
(c) the relative change in hBO from step n to step n+l does not
exceed a small input parameter n.
In mosts of the tests done, n was set to 0.3. When these conditions hold,
a decision is made to use the basis {Vi} produced on step n for the
first Newton iteration on step n+l, but no others, for the reasons given
above. If a second Newton iteration is needed in step n+l, it is done with
the SIUM algorithm (giving new basis vectors), as are the Newton iterations
in step n+2. The new basis vectors are then overwritten on the old ones, for
storage economy. But if step n+l requires only one Newton correction (with
the old basis), and if condition (c) above holds with respect to steps n+l
and n+2, then the first Newton iteration on step n+2 is also done with the

savea pasis, and so on. We refer to this as an Approximate SIOM algorithm.

(In [5], Gear and Saad give a quite different modified IOM algorithm for
reusing the v;, which we did not test.)

In all of our tests with this algorithm, the run times were actually
slightly larger than for the original SIOM algorithm. The results suggest
that the changes in the matrix A from step to step were sufficiently large
that the reduction in basis vector calculations was outweighed by additional

Newton iterations.
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A second form of this approximate SIOM is one given in [5], and corrects
for changes in hBO. Here, on any step satisfying the conditions given
above for reuse of an old basis, instead of using the old values of the inner
products ﬁil in Algorithm 3.3, we adjust these as a function of the
relative change in hqj, denoted by a. As shown in (5], this change is
correctly accounted for by adding a - 1 to the diagonal elements,
refactoring the adjusted Hessenberg matrix ﬁl, and scaling the final

solution vector x by a. The tests with this Adjusted Approximate SIOM

algorithm also showed no gain in efficiency. The added costs appeared to

outweigh the penefits.

5. Numerical Tests

The SIOM algorithm described above, and implemented in a modified version
of the LSODE package, was tested on various ODE test problems. In this
section we give, for each of three problems, a description of the problem,
numerical results obtained, and some discussion. All three test problems are
based on time-dependent partial differential equation (PDE) systems, solved
by the method of lines. All of the tests were done on a Cray-1 computer with
the CFT compiler.

The algorithms tested are the unaltered LSODE package (as discussed in
Sec. 4.1), and the version modified to use the SIOM algorithm (the scaled
version ot the IOM algorithm, as described in Sec. 4.2) to solve the linear
systems (2.5) . In all the tests, we used the parameter values p = lm

ax

= 5and ¢ = U.U5.

In what follows, we will use the following abbreviations for the various

algorithms:
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LSOLE: unaltered LSUDE package

LSIOM: LSODE with the scaled IOM algorithm first method
Unless otherwise stated, the algorithms are as described in detail in
Sections 3 and 4.

For each problem and each algorithm, a test run was made and yielded

various statistics. Those of interest include the following:

R.T. = run time (CPU sec)

NST = number of time steps

NFE = number of f evaluations

NJE = number of J evaluations (= number of LU decompositions)
NSIOM = number of calls to routine SIOM (= number of corrector

jiterations)

FPSIOM

(NFE - 1 - NSIOM)/NSIOM = average number of f evaluations per
SIOM call in LSIOM

07 course the counter NJE is relevant only to LSODE, while NSIOM and FPSIOM
are relevant only to LSIOM., The number FPSIOM is significant in that it
inoicates on the average how hard the SIOM algorithm must work to achieve
convergence. If on a particular problem FPSIOM is very close to the value of

the parameter £

max? then it may be wise to increase Rmax to improve

the overall accuracy and efficiency for that problem. We will also tabulate
the work space, which is the total length of the real and integer work arrays
required. The J evaluations in LSODE were in all cases done by a
user-supplied subroutine, while the products Jv in the SIOM algorithm were

generated using the difference quotient (4.1).
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5.1. Test Problem 1

This problem is based on a pair of PDE's in two dimensions, representing
a simple model of ozone production in the stratosphere with diurnal
kinetics. (See also [4] for comparison tests on this problem.) There are
two dependent variables ci, representing concentrations of 0l and O3
(ozone) in moles/cn?, with vary with altitude z and horizontal position x,
both in km, with O <x <20, 30 <z <50, and with time t in sec, 0 <t

< 86400 (one day). These obey a pair of coupled reaction-diffusion equations:

.t 21 - i .

dC g C 0 ac i, 1 2 ) )

at S’\ axz * oz (KV(Z)BZ )+ R™(c™,c ) (i=12),
Kn = 4.10'6, KV(Z) - 10—8 82/5,

Rt e?,0) = ket - koele? + kg (8) 740108 4 K (2067

Rz(cl,cz,t) =k cl -k c102 - ka(t)c 2

1 2
ky = 6.031, K, = 4.66+107 16 ,
exp[-22.62/sin(nt/43200)] for t < 43200
k}(t) = )
0 otherwise
exp[-7.601/sin(nt/43200)] for t < 43200
ka(t) = ’
0 otherwise

Homogeneous Neumann boundary conditions are posed:

oct/ex =0 onx = U, x = 20,

«ct/3z =0 onz =30, z = 50.
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The initial condition functions are polynomials chosen to be slightly peaked
in the center and consistent with the boundary conditions:

cl(x,z,O) - 1P a(x) 8(z), cz(x,z,o) - 1012 a(x) B(z),

ax) =1 - (1x-1)% « (Ix-D¥2,

Bz) =1 - Glz-8)2 + (1z-a)2.
The PUE's are treated by central differencing, on a rectangular grid with
20/ (K-1). If Cgk denotes the
= 30 + (k-1)4Az,

uniform spacings, & = 20/(J-1) and Az

approximation to ci(xj,zk,t), where xj (j-1)x, z

k
1 <j<J, 1<k <K, then we obtain the following UDE's

Ci = (Ky/&XT) (e, = 205+ C5op k!
(782 TRz ) (05 = O3 - K B2) g € ))
il 2
+R (cjk,cjk,t) .

The boundary conditions are simulated by taking

i 4 i i
ok = %2,k 31,k = o1,k @ll k), and
i _ 1 i B i ‘
5,07 63,20 €j,kel = Sk AL D)

Tne size of the UDE system is N = 2JK. The variables are indexed first by
species, then by x position, and finally by z position. Thus iny = f(t,y),
we have C}k =y, with m = 1 + 2(j-1) + 23(k-1).

For these tests, we chose J = 20 and K = 20 (N = 800). The problem is
stiff because of the kimetics, and the Jacobian has half-bandwidths ML = MU =
2J = 40. A mixed relative/absolute error tolerance was chosen, with RTOL =

5

107 and ATOL = 10°°.
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The results of testing the two algorithms on this problem are shown in
Table 1. In this case, LSIOM shows a dramatic improvement over LSODE, trading
90 Jacobian evaluations (and hence 90 banded LU decompositions) for 680 SIOM
calls (and a net increase in f evaluations), resulting in a savings of roughly
14 sec. (67%) of the CPU time. We note also that the work space required was
reduced by approximately 87%, and the average number of IOM iterates computed
per SIOM call was approximately 1.13. The latter value indicates that the

SIOM is not having any difficulty at all achieving convergence here.

TABLE 1. Test results for Problem 1.

Algorithm R.T. NST NFE NJE NSIOM  Work Space  FPSIOM
(words)

LSULE 21.5 462 659 90 U 106,442 0

LSIOM 7.1 355 1446 0 680 13,675 1.13

5.2 Test Problem 2

This problem is based on a reaction-diffusion system arising from a
Lotka-Volterra competition model, with diffusion effects in two space
dimensions included. There are two species variables, cl(x,z,t) and
cz(x,z,t), representing species densities over the spatial habitat
= {(x,z): 0 <x <1, 0 <z <1.8} and time t in sec,

U<t <10. The equations are

i\ .2 Z

i 21 21 .
%— = a. (dzc + -‘12-0—) + fl(cl,cz) (i =1,2) ,
dax az
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dl = .05, d2 = 1.0,

1,1 2y 1 1 2
f*(c*,c%) =c (bl - ajc” - apc ),
2.1 2y _ 2 1 2
f(c™,c%) = c“(b, -~ a, " - ay,c),

6_ 1, a22=106, bl=b2:106-1+1o"5

ayy = 106, aj, = 1, ay) = 10
Homogeneous Neumann boundary conditions are imposed:

wl/x =0onx =0, x=1; d/z =0onx =0, x = 1.8
The initial congitions involve products of cosines and are chosen to be
consistent with the boundary conditions:

ctix,2,0) = 500 + 250 cos(m) cos(10 mz/1.8),

c2(x,z,0) = 200 + 150 cos(10 m) cos(mz/1.8).

Given the above parameter values and initial conditions, the solution of this
reaction-diffusion system converges as t + « to the equilibrium solution
el - ci =1-10°, c?-= cz = 107°.

The two partial differential equations are again treated by central
differencing on a rectangular grid with uniform spacings, & = 1/(3-1) and
Az = 1.8/(K-1), and with boundary conditions treated as before. For this
test, we chose J = 20 and K = 20, making the system size N = 2JK = 800. The
problem is stiff, and the Jacobian has half-bandwidths ML = MU = 2J = 40. A
mixed relative/absolute error tolerance was chosen, with RTOL = 10'6 and
ATOL = 1077,

The test results on this problem are given in Table 2. The savings here
are not as dramatic as in the first test problem. However, there is a
tradeoff of 66 Jacobian evaluations (and LU decompositions) for 1202 SIOM
calls, which does result in a savings of 4.9 sec. (26%) of CPU time. Notice
also that for this problem the total number of steps for LSIOM is slightly
greater than that for LSODE, and the average number of iterates per SIOM call
is approximately 1.53, slightly higher than before. Again, however, the

storage requirement is reduced by 87% with LSIOM.
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TABLE 2. Test results for Problem 2.
Algorithm R.T. NST NFE NJE NSIOM  Work Space  FPSIOM
(words)
L.SOLE 18.6 582 665 66 0 106,442 0
LSIOM 13.7 617 3040 0 1202 13,675 1.53

5.3 Test Problem 3

Like Problem 2, this problem is based on a two-dimensinnal reaction-

diffusion system comprising a Lotka-Volterra predator-prey model. The two

variables, cl and cz, represent the prey and predator species densities,

and vary over the habitat & = {(x,z): 0 <x <1, 0 <z <1} and

U <t <3. The equations are as in Prablem 2 except for the terms
fl&cl,cz) = cl(bl - ap, c?)
fz(cl,cz) = cz(—b2 * a3y by ,
b, =1, 8, = .1, a,; =100, b, = 1000,

and the initial

cl(x,z,O)
cz(x,z,O)

As t + o

conditions,
= 10 - 5 cos(mx) cos(10 mz),

17 + 5 cos(10 mx) cos(mnz).

the solution becomes spatially homogeneous and tends to a

time-periodic solution of the Lotka-Volterra ODE system delzdat = £

(i =1,2).

This ODE system is alternately stiff and nonstiff depending on the

position of the solution in (cl,cz) phase space.

The two PDE's are discretized on a square J by K grid in the same way as

in Problem 2, giving an ODE system of size N = 2JK, except that we vary the

mesh dimensions from J = K = 10 (N = 200) to J = K = 50 (N = 5000).

Jacobian has half-bandwidths ML = MU = 2J.

The

Tolerance parameters RTOL = 1076
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and ATOL = 107% were used.

The test results on this problem are given in Table 3. Here, in all
cases, LSIOM gives superior run times, with a 52% savings in run time and a
95% savings in required work space for the 50x50 grid problem. However, note
the steady rise in FPSIOM with grid size, indicating that SIOM might require a

larger value of % if the grid were further refined.

nax

TABLE 3, Test results for Problem 3.

Algorithm R.T. NST NFE NJE NSIOM  Work Space  FPSIOM
(words)
10 x 10 Grid
LSODE 6.97 1248 1635 129 0 14,642 0
LSIOM 6.18 1280 5042 0 2609 3,497 .93
20 x 20 Grid
L SODE 52.0 1346 1795 197 0 106,422 0
LSIOM 28.5 1206 6408 9] 2441 13,675 1.62
30 x 30 Grid
LSULE 131.3 1197 1569 la4 0 347,444 0
LS1Um 78.7 1141 8154 0 2287 30,675 2.56
50 x 50 Grid
L SODE 661.4 1,145 1,493 139 0 1,565,042 O
LSIOM 318.7 1,163 12,198 O 2371 85,097 4.14
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6. Conclusions and Future Work

we have presented here an essentially matrix-free Newton-like iteration
scheme and its implementation into the LSODE package for the solution of stiff
systems of UDt's. Tne focus has been on those problems for which the cost of
performing the linear algebra associated with solving the system (2.5) by
matrix methods far outweighs that of a function evaluation. Hence, one can
use a matrix-free method such as the IOM algorithm to perform the Newton
iterations involved in the integration of the problem, at a greatly reduced
cost in run time, overall work and storage. The inclusion of scaling
associated with error tolerances, in the SIOM form of the algorithm, is
crucial for robustness, we feel. Although our testing has been somewhat
limited, initial results seem very promising.

There are several aspects of the method which need investigation,
however. For example, a geeper understanding of the convergence of the 10M
algorithm may indicate a class of problems on which IOM will work very well,
while at the same time eliminating other classes. Currently, it is impossible
to predict how I0M will perform.

The corrector loop strategy given in the modified algorithm of Section 4.2
may show improvement by employing some of the techniques from Dembo, Eisenstat
and Steihaug [1] for Inexact Newton Methods. In [5] and [6], Gear and Saad
have suggested ways of reusing the vectors VisereiVy and the matrix
ﬁg. Our initial testing of these ideas indicated that they are not

beneficial, but much more testing needs to be done to make a final decision as

to their usefulness.
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In the test results of Section 5, we have exclusively used the parameter
values Qmax = p = 5. This effectively reduces Algorithm 3.3 to a scaled
version of Arnoldi's algorithm, instead of the IOM algorithm. Some of the
test cases were also run with p values between 2 and 5, and some of the
resulting run times were lower (from fewer function evaluations), but not by
very much. This may be due partly to the fact that both p and Rmax are
relatively small. In the course of further testing (and possibly even in a

dynamic manner), % may need to be made larger, thus making IOM more

max
competitive.

In conclusion, the 1UM algorithm certainly shows promise of being a very
competitive method for use in the numerical solution of large stiff systems of

Ubt's, and may also prove to be competitive for use in a Newton-like method

for the solution of nonlinear systems of equations in general.
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