Keynote Speec 16t TEEE Smosivm on (ompuber Arithmetic
6‘(2”0‘3[?/ F(a n(P/ j\;ne 2__5/ 1 ﬁ‘}p

Arithmetic Standards: The Long Poad
W. J. Ccdy

This is the tenth IEEE Symposium on Computer Arithmetic. A
number of pecple here tonight were among the 25 attendees of the
First symposium, a l-day worlkshop organized and haosted by Pohert
Shively in Minneapolis in June, 19ES. Some of the attendees have
been involved with all 10 of the symposia, so there is a strong
thread of continuity running through these meetings. ff lot has
changed since 19683. One of the most significant changes for us
has been the emergence of official standards fcor floating-point
arithmetic.

When David Matula and Peter Kornerup asked me to speak tonight,
they suggested that a discussion of the history and significance
of these standards would be appropriate. My visws in these
matters are undoubtedly biased; I am a numerical analyst
concerned with mathematical scftware, not an electrical engineer.
I know nothing about the difficulty of designing and implemesnting
arithmetic engines, but I can attest to the misery that pocr
arithmetic engines causs. My professional concern has aluays
been with the praovision of high-quality numerical prograzms for
scientific computation. Ideally, these programs will be
reliahle, rogbust, and portable. Reliabkility means that ths
program returns an accurate result angtime that result can be
computed from the data. PBEobustness means that the prcgram is

resilient wunder intentional or wunintentional misuses. And
portability means that the program can be mo.ed frocm one machine
to another with no degradation in performance. Peliability,

robustness, and portability are now standard attributes of good
numerical software.

We now routinely expect our software tc have all of these
attributes. They are often difficult to achieve; some might say
they are not worth the effort. Why worry about whether a machine
rounds or truncates, for example? How could that possibly affect
in any significant way the accuracy of the result, especially
with the reasonable wordlength of modern computers? Far the
answer to that, we turn to the Wall Street Journal of tiovember B,
1383.

Things were looking grim at the Vancouver Stock E:change.

Brokers and investors on the free-wheeling penny-stock
market wondered where the North American bull market had
gone, as the exchange inde: kept dropping. The inde:, which
had heen established in January 1382 at a level of 1,000,
recently has been hitting lows in the 520 range.

Now the exchange says it goofed in calculating the inde::.
Bonald Hudson, the e:change’s embarrassed presidant,
estimates the true value (of the inde:} at between 300 and
1000, or maybe even over 1000,



The index is based on the selling price of all 1,400 or s=o
stocks listed on the s:xchange. Every time a stoclk price
changes, which happens 2Z,B00 times on an average day, =2
computer recalculates the inde: to three decimal places.

The mistake was made in calculating the last decimal place.
(The computer simply truncated instead of rounding to three
decimal places.)

So here 1is an example where truncating instead of rounding
completely destroyed the validity of a simple computation. Yes,
the destructicn occurred over a pericd of time and cver many
computations, but consider how many computations a modern
supercomputer carries out each second. The lesson is there for
all of us.

We know of no major disasters that hawve cccurred because of poor
arithmetic, but let me also read you an excerpt from an article
in Aviation Week and Space Technology for March 31, 13831, The
article concerns flight testing of a new, high-tech research
aircraft, the X-31, Jjointly designed by the United States and
Germany.

The Honeywell digital flight control system is derived from
one used on the Lockheed C-130 high-technology testbed
aircraft. It has three channels with a fourth computer used
as a tie breaker. The cantrol system went into a
reversiocnary mode four times in the first nine flights,
usually due to disagreement between the two air data
sogurces. The air data computer dates back to the mid-1380s
and had a divide-by-zero that occurred briefly. This was
not a3 problem in its previous application, but the X-31
Flight control system would not tolerate it. This was fi:zed
with software in January, and the problem has not reoccurred
in seven subsequent flights.

Exactly what is a briefly occurring divide-by-zero, and why was
it ignored Ffor thirty ysars? PRecent arithmetic systems would
call attention to a divide-by-zero either with an interrupt or
with a signal and a default infinite result. Either way, the
prohlem would be made known. Can we assume that those using this
Honeywell system were also aware of the problem and simply chose
to ignore it? That is a frightening possibility. How many such
Flawed systems are in use today? Is it anly a matter of time
before we are talking abaout a major disaster cawused by bad
computer hardware or software? As computer engineers and
programmers, quality must be our first priority.

Some of us waorking on mathematical software became convinced of
that 1in the early 1360s when subroutine libraries first became
popular. Despite being based on solid mathematics, our programs
often failed in mysterious ways. Worse yet, routines we thought



were working properly suddenly failed on new machines. W. Kahan,
then at Toronto, H. Kuki at the University of Chicago, G.
Forsythe at Stanford, a small group at Bell lLabs, and a graup I
headed at Argonne all worked at producing decent libraries for
pur own installations. As we gained xperience and began to
understand what we were doing, we sought to write programs with
the three attributes mentioned earlier: reliability, rckbustness,
and transportability.

This was not easy, because uwe discovered that even the most
fundamental mathematical relations failed to hold on some
computers (as they still fail on some of our biggest and fastest
computers today). Given machine numbers X and Y, one reascnably
expects that

X * 1.0 =X,

X+ X =2,0* X,

X * Y =Y * X,
and

X< (X +Y) /2.0<Y when X < Y.

Yet each of these relations could fail on at least one machineg,
some on many different machines, and the nature of the failures
differed from one arithmetic sngine to another. Many arithmetic
design parameters contributed to these difficulties. Some
machines lacked guard digits for one or more of the Fundamental
arithmetic operations, some used hexadecimal arithmetic, same
truncated, some used bizarre rounding schemes, some had over-—
length arithmetic registers, and some compilers were flaky. Come
to think of it, not much has changed in thirty years, has it?7?

To illustrate the problems we faced, lets go back 20 or 25 years
and consider a simple computational task: write a portable
Fortran code to determine the underflow threshold on any machine.
This is one of the steps in the MACHAR program for determining
machine parameters. First of all, what do we mean by underflow
and how do we test for it? Intuitively, underflow occurs whan
the exponent of a computed result becomes too small for the
representation scheme. Such results are often represented as 0.0

Cthe "Flush-to-zero” approachl. So the obviogus strategy is to
construct smaller and smaller numbers wntil wunderflow is
detected. The following code might be a first try. We assume

that the variable B has been initialized to the radix for the
machine.
X=1.0/B

Y = X
I =0
102 = Y
Y =Y * X
I =1+ 1

IF (Y .NE. 0.0) GD TO 10
If all goes well, 2 is the smallest power of the radix that does
not underflow. This scheme worked well on mainframe IBM
machines, for example, hut went into an infinite loop on another



popular machine where underflow was replaced by the smallest
positive machine numher. That was easily fixed, of course, by
modifying the test to read
IF (Y .NE. 0.0) .AND. (Y .NE. 22> GO TO 10
But on other machines, the underflowed exponent wrapped around to
produce a large number, sometimes with a sign change. Soc the
test had to become :
IF (C(Y .NE. 0.0) .AND. (ABS(Y> .LT. 223> GO TO 10

But on the CDOC B600, the smallest non-vanishing power ofF the
radix was ambiguous. On those machines there existed small
positive Y such that

Y + Y = 0.0
even though other operations with Y were okay, i.e.,

Y * 1.0 =Y
to within rounding error. Clearly, the test for non-vanishing Y
had tao be Further altered to check whether Y + Y vanished. coc
was Jjustifiably embarrassed by that behavior, so they fixed it on
the CDC 76800, On that machine, Y > 0.0 implied that Y + Y > 0.0.
Unfortunately, for some small ¥ > 0, ¥ * 1.0 now vanished. This
required yet another modification to the test. With all of this
the algorithm still did not detect a useful underflow threshold
in double precisicn gon the CDC 7600 because the standard CDC
compiler on that machine treated double-precision numbers as an
ordered pair of single-precision numbers. You guessed it, the
least significant member of the pair could underflow to zero
independent of the most significant member, so a computation
could laose half of its significance without warning of any kind.
To detect this strange underflow, the test in our algorithm had
to be modified once more, and by now what started cut as a simple
computation had turned into a puzzling collection of tests most
of which were superflucus on any particular machine, but each of
which was necessary on some machine.

Add together all of these schemes for underflow, throw in the
various weird rounding schemes, the lack of guard digits,
hexadecimal arithmetic, aover-length arithmetic registers on some
machines, Flaky compilers and operating systems, and stir the
whole mess up. This was the hardware/software swamp that those
of us working on numerical software faced in the late 138B60s. Ue
found ourselves spending more and more of our time trying to
discover and program around anomalies in the popular machines.
With one notable exception, manufacturers paid little attention
to our loud and bitter complaints about their arithmetic engines.
Hirondo Kuki did manage to convince IBM to make a field change cn
the early 360 machines that lacked a guard digit in double
precision. But that is the only success we had, and IEM people
confided to me privately that they would never make such a
harduware field change again. We felt that our needs were being
ignored.

The IBM 360 family also introduced hexadecimal arithmetic.
Unfortunately, Kuki could do nothing about that and we have



struggled with the resulting "wobbling precision” ever since.
The mystique of the IBM name caused IBM sales to soar despite
their poor arithmetic design, and their success prompted other
manufacturers to go the hexadecimal route. One nameless
manufacturer in particular designed a hexadecimal machine that
was extremely flawed. The demonstration team that visited
Argonne bragged about a Fast multiply operation that produced
double-length results from single-precision gperands. This
operation became the basis FfFor a Fast double-precision multiply.
Their scheme divided the double-precision operands into pairs of
single-precision operands, and then summed three, not four,
single-precision multiplies, each producing a double length
result. A back-of-the-envelope computation showed that rather
than producing a fFull double-precision product, they could lase
almost a fourth of their significance in some cases. The problem
was wabbling precision coupled with that ignored fourth product.
This was pointed out to them before they left Argonne. I still
have the letter the team leader wrote a few days later in which
he said ”Yes, our engineers see now . that they have blundered, but
we would not let that stop us from selling you a machine.”
Perhaps that attitude was unusual, but the truth is probably that
the attitude was common; only its expression in writing was
unusual .

Clearly, gquality of numerical scoftware depends on the quality of
the underlying algorithms and the skill of the programmer. But
it alsc depends on the quality of the tools the programmer uses:
the arithmetic engines and the algebraic compilers. So our guest
for quality in mathematical software necessarily involves us with

those providing the tools. And that is where we becoma
professionally concerned with standards. Not necessarily formal
written "standards”, but informal minimal standards aof
performance.

Many of our frustrations with the hardware were discussed at the
first Mathematical Software mesting, hosted by John Rice at
Purdue in 1870. One of the complaints voiced at that meeting was
that our message was not getting through to the designers of
arithmetic systems. Shortly after that meeting, Kuki and I
attempted to substantiate our dissatisfaction with existing
arithmetic designs and ta Justify our preferences by
statistically studying the effsct of various design paramegters an
the accuracy of common computations. Unfortunately, Kuki passed
away shortly after the manuscript was accepted for publication.

A friend suggested that 1 summarize the wark with Kuki at an
arithmetic conference tao be held in Maryland in May 1872. That,
of course, was ARITHZ2. It was a Follow up to the l1-day workshop
on computer arithmetic organized and hosted by Robert Shively in
Minneapolis in June 19693. Among the 25 attendees at the
Minneapolis meeting were at least two numerical analysts, Dave
Matula and Richard Brent, so our participation followed a



precedent. At any rate, the paper was accepted for ARITHZ, and 1
attended the mesting with great hopes of finally convincing
designers of the seriocusness of our concerns. Alas, all of the
numerical talks, including some by Brent and Matula, were
scheduled for the last morning of the meeting. The audience was
small. Professors Avizienis, Ercegovac, and Svoboda were in
attendance, but many of the other people we had come to impress
had left. Numerical analysts found themselves largely talking tao
themselves, and left the meeting completely frustrated. Somehow,
miraculously, some of the papers were printed in a special issue
of the IEEE Transactions on Computers, and we did reach designers
after all.

I don’t recall hearing the last paper scheduled for ARITHZ, but
it was printed in the informal proceedings. It was titled
?Standards for Computer Arithmetic”. The author, a Professor
Marcavitz from Florida State University, pointed out =all of the
pbvious disadvantages to standardizing arithmetic, and urged
rejection of a proposed standard recently submitted to ANSI,
Marcovitz’ paper is the only reference I ever saw to that early
standardization effort, so the standard must have been still-
born.

From 13972 on, these Computer Arithmetic Conferences have been an
important forum for designers and users af arithmetic systems to
share opinions. The next few meetings included additional
discussion of machine parameters and of the implications of
machine design for numerical accuracy in addition to the papers
on circuit design and p-adic arithmetic. Still, the economic
forces driving the mainframe marketplace dictated that each
company pursue its own design to the exclusion of all others, and
little progress was made towards improved arithmetic design, let
alone minimal standards of perfaormance.

The next mention of an arithmetic standard in the proceedings of
these meetings is a paper by G. Walker from Motorola at ARITHS,
held in Ann Arbor in 1981. The paper discussed the extension of
the MBBOCO to incorporate the proposed IEEE standard Ffor
Floating-point arithmetic. There was also a minisymposium
discussing the proposed IEEE standard at that meeting. What
happened bhetween ARITH4Y in Santa Manica in 1378 and the Ann Arbor
meseting?

The main catalyst was the appearance of a new kid on the block,
one wha didn’t know much about floating-point arithmetic except
that he probably needed it. That was the microchip industry.

As best I can reconstruct the important events leading up to the
IEEE effort, John Palmer of Intel had taken a class from W.
Kahan, now at UC Berkeley, and had absorbed Kahan’s preaching
about what a floating-point unit should provide. Palmer was also
aware of Kahan’s influence in ths design of HP calculators, and



convinced the people at Intel to bhring Kahan 1in as a consultant.
Kahan not only saw the opportunity to finally design an
arithmetic unit that would mest his expectations, but the
oppaortunity to influence an industry as a whole. He confided to
me at a meeting in Pasadena in 18976 or 1877 that while he could
not influence the design of mainframes or of minis directly, he
could insure that micros had excellent arithmetic. He believed
that the market for micros would grow, and that their superior
arithmetic would eventually pressure the manufacturers of larger
machines to provide better arithmetic engines. In modern
terminology, he intended to ocutflank them.

Thus was born IEEE project P754%. Main players in the effort were
Kahan and Palmer, of course, together with Harold Stone from the
University of HMassachusetts, Robert Fraley and Stephen Walther
fFram HP, Mary Payne, Dileep Bhandakar, and William Strecker from
DEC, David Stevenson from 2ilog, Jerry Coonen from UC Berkeley,
David Hough and Jim Thomas from Apple, Fred Ris from [BM, Richard
Karpinski from UCSF, Richard Delp from Four Phase Systems, Tom
Pittman from Itty Bitty Computers, Bob Stewart from Stewart
Research, and others whose names elude me at the moment. I
Joined the effort after the first year or so. Kahan won the
Turing Award last year fFor his rpole in the effort. The important
thing is that there was wide-spread participation in the effort,
and the early deliberations involved several Ffundamentally
different proposals. The outcome of that effort and the follow-
on PB54% project is familiar to all of you. Today we have
fFloating-point arithmetic standards that are implemented on all
sorts of machines fram workstations to massively parallel
machines, 1like the Connection Machine and the Intel Delta, that
verge on being supercomputers. Kahan has recently told me that
Cray 1is thinking seriously of adding IEEE arithmetic to their
machine line, something that most of us would applaud. The lack
of a guard digit on Crays is still a source of anomalies, as
Kahan has pointed out over and over again for the last decade or
sa.

Has the binary standard been a bad thing? I think not. From the
hardware viewpoint, it has minimized the design effort for
startup companies and has minimized if not eliminated the
appearance of new anomalies on new machine designs, but it has
not stifled creativity of designs. Until recently, at least, the
designers of Crays, mainframe IBMs, and other such machines have
still been doing their thing. Nor is it the only good design
around. The DEC VUAX offered a marvelous arithmetic engine about
the time the standards effort began. The VUAX is still a great
machine For numerical computations, especially since they
introduced the G-fFarmat double-precision and the H-format
extended-precision arithmetic.

If there is a drawback to the standards, it is the inclination of
those preparing government procurement specs to require IEEE



arithmetic simply because the standard is so well known. Just as
I objected to buying IBM machines on the basis of the name, I
believe that requiring IEEE machines without a strong technical
reasan is an error. For aone thing, it rules out consideration of
worthy machines like the VAX in cases where they might be ideal
for the intended purpaose. Further, and more important, despite
the appearance of the standards, few manufacturers offer Full
implementations. Many take shaortcuts by not offering features
like graceful wunderflow, infinities and NaNs that the standard
requires. Even if the hardware offers a complete implementation,
the operating system and compilers often do not offer support faor
Features 1like rounding control and user-supplied trap handlers.
The danger in specifying full conformance to the 1EEE standard is
that the choice is suddenly limited toc very few machines unless
one waves his hands and says, "you know what we mean by
conformance”. Such vague statements are not only contrary to the
very idea of a standard, they also provide a good living Ffor
lawyers contesting procurement contracts.

The formal approval of a standard hasn’t solved all of our
problems -- much remains to be done. From the viewpoint of the
producer of numerical software, the standard has made the Jjob
easier, but it has also introduced new barriers. The IEEE
standards do not address the problems of language interfaces -—-—
how the hardware features are to be made available to
praogrammers. Drafters of the Ada and C standards, at least, are
currently wrestling with how to exploit the features of IEEE
arithmetic without crippling applications running on other
architectures. How does one specify rounding control, or the
handling of signed zero for machines that lack such features?
Faor that matter, how does one exploit signed zero on machines
that have it? Think a bit about what a signed zero means for a
complex argument on a branch cut; a returned function value can
Jump from one sheet of a Riemann surface to anather with a change
in the sign of zero. How does Ada, which requires an overflow
exceptiaon, coexist with the IEEE infinity? These are deep
questions that are not easily answered. Fortunately, both the
Ada and C efforts involve numerical analysts who understand the
hardware and the preparation of numerical software.

In addition to the vital problems of software support, thare are
problems associated with areas where the bhinary standard is
permissive., What is the proper way to output an infinity or a
NaN, for example? How does one indicate such a thing in an input
stream? The binary standard says nothing about this, although
the BS54 standard does. What is the proper ordering of the halves
of a double-precision number in storage (the old big-endian,
little-endian problem)? The binary standard specifies what a
double-precision quantity 1locks like in a register, but not in
storage. The Sun is a big-endian machine, while the Sequent
Symmetry is a little-endian, so these questions are important.
What determines when an intermediate result should be retained in



the extra-precision registers found in many implementations of
the standard, and when it should be forced to storage Format?
This 1is a real bone of contention between those designing
optimizing compilers and those trying to do delicate
computations.

The committees that drafted the floating-point standards have
been criticized lately for not dealing with these language issuess
themselves, for not specifying the way a language should control
rounding options, Ffor example. I personally believe the
criticism to be unjustified. We had enough trouble drafting
arithmetic standards for what we thought to be a small market.
It would have been presumptucus of us to try to dictate to the

language standards people as well. Indeed, if we had tried to do
so, our drafts would probably not have passed the ANSI and IS0
committees. In hindsight, because of the enormous success and

popularity of the arithmetic standards, we might be better off
today if language bindings had been included.

One final thought on standards. They are there as guidance.
They should never be taken as the Final, once and forever way For
everyone to do something. Several years ago, someane approached

me with his new scheme for computer arithmetic. He informed me
that the IEEE standards effort was a waste of time because his
scheme was far superior. In effect, he said, ”“you are either
with us or against us.” That attitude delayed acceptance of his
scheme as a useful tool for years. Beware of such zealots, [EEE
supporters or not. There is no best way to do anything.

In summary, I persaonally believe that the IEEE floating-point
standards have been a significant step forward. They are nct
perfect, but they have greatly simplified work on numerical
software. At the same time, the job is not done; much remains to
be done to fully exploit what they offer. More impaortantly,
other valid approaches to computer arithmetic exist. Lets hope
that the convenience of a pre-designed system does not stifle

creative Jjuices. Lets alsa haope that the standards have
established a lower bound on acceptable gquality of arithmetic
designs. Let us never again have to wrestle with an X that

vanishes when added to itself.



