i/fat.hematiés andGCofnputers
(UC-32)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

SECOND THOUGHTS ON THE MATHEMATICAL SOFTWARE EFFORT:
A PERSPECTIVE

W.J. Cody

Mathematics and Computer Science Division

October 1984

Second Thoughts on the Mathematical Software Effort: A Perspective
W. J. Codyt

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439

‘Abstract. The mathematical software effort bridges the gap between the
discovery of numerical algorithms and the consumption of numerical software.
The spectrum of activities is surprisingly wide, including tasks often associated
with numerical analysis, program design and testing, programming practices,
language standards, documentation standards, software organization, distribu-
tion methods, and even the specification of arithmetic engines. This paper
highlights the most important accomplishments in the field over the last twenty
years. It also examines current problems and future challenges posed by the
rapid advance of technology.

1. INTRODUCTION John Rice coined the term ‘'mathematical software’ in 1969,
and focussed attention on the subject the following year with a symposium held
as part of a Special Year in Numerical Analysis at Purdue University. The move-
ment spawned by that first meeting has been fruitful. In 1969 only a few indivi-
duals worked on what we now call mathematical software, and only a few for-
tunate computer sites had access to decent numerical programs. Today many
talented people work in the fleld, large collections of good numerical software
are widely available, and specialized meetings are common.

A description of the mathematical software effort is difficult because it is so
broad. Its domain is that nebulous region between the discovery of numerical
algorithms and the consumption of numerical software. On the one hand numer-
ical analysts devise new computational methods, and on the other hand individu-
als wish to apply eflective methods to their immediate problems. It is the job of
the mathematical software effort to bridge the gap by packaging numerical
analysts' work in software appealing to the consumer. Strictly speaking, work
on mathematical software is limited to tasks related to the implementation of
numerical algorithms. In practice the spectrum of activities is surprisingly wide
because the process of implementation is itself worthy of study. In addition to
obvious concerns with program design and testing, there are major concerns
with programming practices, documentation standards, software organization,
and distribution methods. Other activities involve the development of program-
ming tools to partially automate design, implementation, testing and mainte-
nance of software, and work on the computational environment, including the
design of arithmetic systems and programming languages properly supportive of
good numerical software. Major contributions have been made in each of thesse
areas by individuals who consider their primary interest to be mathematical
software.

t This work wes supported by the Applied Mathematical Sciences subprogram of the OTice of 2n-
ergy Research, U. S. Department of Energy, under contrect ¥-31-108-Eng-38.

The published proceedings of the Purdue meeting contain Rice's appraisal
of the mathematical software effort as it stood in 1970 [Rice, 1971], including a
chronological account of progress. This paper is a similar appraisal of the effort
as it stands today. Instead of updating the chronological record, however, we
discuss what we consider to be major milestones marking progress to this point.
We then examine current problems in the field and future challenges posed by
an advancing technology.

An earlier version of this work [Cody, 1984a] was inspired by a panel session
on the same subject that ended the week-long International Seminar on Prob-
lems and Methodologies in Mathematical Software Production heid November
1980 in Sorrento, Italy, under the sponsorship of the University of Naples and
the C.N.R. [de Mao, 1982]. That version was outdated by the time it was pub-
lished, however, so we have taken this opportunity to revise it to reflect the
events of the past four years. Hence, the "second thoughts” in the title.

References have been modified to include the latest relevant publications.
In particular, references for various "PACKS" and libraries have been changed
to articles in [Cowell, 1984], which contains valuable historical and technical
information on the mathematical software effort written by the participants, as
well as additional references for those interested in deeper reading on a topic.

We gratefully acknowledge the contributions of our fellow panelists at the
Sorrento meeting, B. Ford, T. J. Dekker, M. Gentleman, J. N. Lyness, and P. C.
Messina, a responsive audience there, and an anonymous host of others who
have since then unknowingly contributed to our thoughts on these matters. With
the benefit of leisurely reflection we have reorganized and expanded some of
their ideas and combined them with our own. We alone are responsible for the
selection and expression of the opinions that follow, however.

The reader should be aware that the views presented here may be colored
by personal bias, and that other views exist. The surveys and suggestions for
research in Gear [1979], Huddleston [1979], Morris [1979{ Rice [1979], and Rice
et al. [1978] are especially recommended to the interested reader.

2. THE PAST Many people associate the beginning of the mathematical
software effort with Rice's 1969 call for a meeting at Purdue University. The
roots go back further, however. While it would be trite to trace them to the first
numerical subroutine libraries, we detect an emerging concern for software
quality in the early 1960's. By then individuals at the University of Toronto, The
University of Chicago, Stanford University, Bell Laboratories and Argonne
National Laboratory were critically examining software and advertising their
findings through technical reports and discussions at computer user group
meetings. The ideas and evaluation techniques were not well enough established
for publication in refereed journals, however, and efforts were hampered by poor
communications. Often workers at one location were completely unaware of
similar work elsewhere. Yet each of these computing centers devesloped out-
standing program libraries by contemporary standards.

In early 1966 J. F. Traub organized SICNUM, the Special Interest Committee
on Numerical Mathematics. The group grew quickly; and by midyear, when the
first informal S/CNUM Newsletter appeared, it had a membership of almost
1000. Two articles in the first Newsletter typify SICNUM's interests. The first
announced the establishment of a working group ‘‘to investigate testing and
certification techniques for numerical subroutines,’” and the second announced
a SICNUM-sponsored evening session at the 1966 National ACM Conference. The
session included a panel discussion “in the area of machine implementation of
numerical algorithms.'' By constantly emphasizing efforts to improve the quality

ol numerical software, SICNUM and its successor SIGNUM set the stage for Rice's
1969 call for a symposium.

In that call Rice [1969] defined mathematical software as ''computer pro-
grams which implement widely applicable mathematical procedures.”” This con-
trasts with the definition he later included in the published proceedings, '‘the
set of algorithms in the area of mathematics’' [Rice, 1971]. These two
definitions illustrate the fundamental confusion between algorithms and com-
puter programs that plagued the early development of numerical software. The
realization that an implementation is different from the underlying algorithm
marks the emergence of mathematical software as a separate field of endeavor.

That difference was not widely understood in 1869. Despite early admoni-
tions from G. Forsythe [1966] and other prominent researchers, most numerical
analysts still believed that their work was finished when they had defined an
algorithm. Programming was a job for programmers; numerical analysts pro-
grammed only when it was necessary for their research (and pure mathemati-
cians never programmed). A university professor seeking advancement and
tenure shied away from working on numerical software. As a result most of the
early work was concentrated in government and industrial laboratories, with
only a few selfless university people involved. Unfortunately, the same attitudes
are still common. While work on mathematical software has gained some profes-
sional stature and there are more talented people involved in the effort today
than were involved in 1969, many others still do not dare to become involved if
they seek promotion. This is still especially true at many universities.

Three software projects that greatly influenced the mathematical software
eflort began about the time of the Purdue meeting. Each project —IMSL, NAG
and NATS — resulted in a widely used collection of high-quality numerical
software. Certain software collections were publicly available before this. Com-
puter users’ groups had organized program repositories by the early 1960’s, and
the IBM Scientific Subroutine Package (SSP) was available on the 1BM 7094, for
example. Although these collections contained a few good programs, their gen-
eral reputations were deservedly notorious. The IMSL, NAG, and NATS collec-
tions were the first to combine quality with wide distribution.

IMSL (International Mathematical and Statistical Libraries, Inc.) was
founded in 1971 [Aird, 1984] by some of the people involved in the IBM SSP
effort. It delivered the first purely commercial numerical subroutine library to
IBM customers a year later. By mid-1973 the library had also been delivered to
UNIVAC and CDC customers, and for the first time the same library of numerical
programs became available on a variety of computing equipment. This enabled
numerical programmers to write and distribute applications programs without
worrying about the availability of a decent support library. Today IMSL supports
most major computers. The success of this venture is suggested by the number
of computing centers now relying on IMSL and its competitors for their core
library, thus freeing local personnel to develop the specialized programs neces-
sary for their own work.

IMSL's main competition comes from the NAG and, to a lesser extent, PORT
libraries. NAG, originally Nottingham Algorithms Group but now Numerical Algo-
rithms Group, was organized in 1970 in Great Britain as a cooperative venturs
between universities using ICL 1908A/S computers [Ford and Pool, 1934]. Origi-
nally supported by heavy government subsidies, NAG extended its coverage to
other machines and now has become self-supporting. The PORT library is a pro-
duct of Western Electric arising from the early library work at Bell Laboratories
[Fox, 1984]. It is not aggressively marketed and is therefore not as widely used
as the IMSL and NAG libraries.

4

The NATS project, National Activity to Test Software, was conceived in 1870
and funded in 1971 by the National Science Foundation and the Atomic Energ
Commission to study problems in producing, certifying, distributing and main-
taining high-quality numerical software [Boyle et al., 1972]. This was a coopera-
tive effort between personnel at Argonne National Laboratory, Stanford Univer-
sity, The University of Texas at Austin, and scattered test sites to examine
software production as a research problem. Intrinsic to this effort was the pro-
duction of two software packages, the EISPACK collection of matrix eigensystem
programs [Dongarra and Moler, 1984] based on Algol procedures published by
Wilkinson and Reinsch 51971], and the FUNPACK collection of special function
programs [Cody, 1984b]. The project formally ended with the distribution of
extended second releases of both packages in 1976. '

By any measure, the NATS project was a spectacular success. Not only did
it produce superior software, but it also pioneered in organizational and techni-
cal achievements that are still being exploited. For example, the project
developed an early system for automated program transformation and mainte-
nance [Smith, Boyle, and Cody, 1974] that led directly to current research on
the TAMPR system [Boyle and Matz, 1977]. We believe that the NATS aids were
developed before similar aids for program transformation were developed at the
Jet Propulsion Laboratory [Krogh, 1977] and within the IMSL [Aird, 1977] and
NAG [Du Croz, Hague, and Siemieniuch, 1977] projects. They were certainly the
first to be successfully used in a software project. Important as such technical
. achievements were, however, they were overshadowed by the organizational con-
cepts the project developed. Machura and Sweet [1980] have stated, ''The most
important lesson learned from the EISPACK project is that the development and
distribution of quality software can be achieved by the joint efforts of several
different organizations.”” Before the NATS success software was typically
developed with the limited resources of one organization; since the NATS suc-
cess cooperative ventures have become common.

None of this would have mattered if the NATS software had not been supe-
rior. Fortunately, the software produced by the project was well received and is
still considered to be among the best available. EISPACK, in particular, set and
met high standards for performance, transportability, and documentation. It
has become a paradigm for thematic numerical software collections with the
term ""PACK’ now implying all that is good in numerical software. Attesting to
EISPACK's influence, the following PACKs in addition to FUNPACK either exist or
are in advanced planning stages: ELLPACK [Rice, 1977)], FISHPAK [Swarztrauber
and Sweet, 1979], ITPACK [Grimes et al., 19783. LINPACK [Dongarra and Stewart,
1984], MINPACK [Mor¢ et al., 1984], PDEPACK [SCCS, 1975], QUADPACK [Piessens
et al., 1983], ROSEPACK [Coleman et al., 1980], SPARSPAK [George and Liu,
1981], TESTPACK [Buckley, 1982], and TOOLPACK [Osterweil, 1983]. While many
of these are superb packages, the use of a "PACK"’ name does not automatically
instill quality. We return to this point later.

It is disappointing that the NATS experience was not fully exploited.
Attempts to establish a central organization for software production based on
the NATS concept [Cowell and Fosdick, 1975 and 1977] failed for various pclitizal
and technical reasons. This denied segments of the numerical software com-
munity access to experienced people and important resources. Kany of the pro-
jects mentioned above had to rely on their own resources to coordinate produz-
tion, certification, and distribution of their software, duplicating similar capabil-
ities already developed in other projects.

The first Purdue symposium was followed by three other important meet-

ings. SIGNUM sponsored a meeting in 1971 in Ljubljana, Yugoslavia, concurrent
with the 1971 IFIP Congress, that ultimately led to the establishment in late

1974 of WG 2.5, the IFIP Working Group on Numerical Software. Members of the
working group now represent numerical software interests in language end
hardware standardization efforts, often with detailed advice from the group as a
whole. In addition, the working group has organized several international
workshops on software topics and has drafted and published several technical
reports.

The second important meeting was the second software symposium held at
Purdue in 1974. While its influence was not as great as that of the first meeting,
it did lead to the establishment of the ACM Transactions on Mathematical
Software with John Rice as editor. Since its appearance in early 1975 with
papers from the Purdue meeting, TOMS has complemented the SIGNUM
Newsletter by providing an outlet for refereed numerical software papers.

The second Purdue meeting was also noteworthy for the first open discus-
sion of the BLAS, or Basic Linear Algebra Subprograms [Lawson et al., 1979]. As
the name implies, the BLAS are a collection of Fortran subprograms implement-
ing low-level operations, such as the dot product, from linear algebra. The pro-
ject was originally organized in 1973 as a private effort to reach consensus on
names, calling sequences, and functional descriptions for such programs, but it
quickly became a cooperative effort officially sanctioned by ACM-SIGNUM. Once
conventions had been agreed on, it was possible for linear algebra programs to
do fundamental operations in a uniform way. This was already a significant
accomplishment, but the group also prepared efficient implementations of the
BLAS for most popular computers. The project’s most important contribution,
however, was the concept of establishing popular ‘‘conventions'’ as opposed to
official standards. Language designers are reluctant to augment standard
languages to include something useful to only a small group. Even if that is
done, years pass before the new feature is available in compilers. The establish-
ment of private conventions outside language standards is a more reasonable
approach, and the BLAS project demonstrates that it is also a practical one. As
with NATS, this lead has not been fully exploited.

A measure of the success of this effort is the continuing appearance of pro-
posals for new BLAS packages. These currently include suggested extensions for
sparse matrices, and for fundamental matrix, as opposed to vector, operations.
Just as those in the NATS project have been concerned about the use of a
“PACK'' name for software that may not be of the highest quality, the architects
of the BLAS are concerned about the threatened proliferation of new BLAS pack-
ages. Extensive public involvement with long consideration of the implications
of each suggested member of the package was important to the success of the
original BLAS effort. It is not obvious that the same care will be taken by those
proposing extensions. Is the inevitable price of a successful package that
perhaps less-than-worthy follow-ons using a similar name will diminish the spar-
kle on the original? It is a problem apparently without an acceptable solution;
we do not believe in trademarking as DOD has done with Ada.

The third meeting of importance was the Oakbrook Workshop on Portability
of Numerical Software held in 1978. Several of the technical presentations at
this meeting enspired participants in the IFIP WG 2.5 meeting immediately fol-
lowing to petition the Fortran Standards Committee with proposals for changes
in the impending draft standard. They were too late to have any effect on the
Fortran 77 Standard, but their action ultimately led to active membership on
X3J3 for representatives of SIGNUM and IFIP WG 2.5. Today, there are a handful
of prominent mathematical software people on X3J3 contributing to the next
draft standard.

It is difficult to assess the importance of events in the immediate past, but
we believe that the recently proposed IEEE standards for floating-point

arithmetic will prove to be important. One of the difficulties in producing
mathematical software has been the diversity and overall shabbinesss of main-
frame arithmetic systems. High-quality software is supposed to be fail-safe and
transportable; it must work properly regardless of quirks in the host arithmetic
system. Software production is seriously hampered when computer arithmetic
grossly violates fundamental arithmetic axioms such as the commutative and
associative laws, and the existence of a multiplicative identity. Somse systers
have even worse defects, often involving illogical underfiow and overfow.
Anomalies such as these are usually traceable to engineering economies [Cody,
1982]. Mainframe designers traditionally ignore complaints about such
matlainatical atrocities, and new anomalies seem to appear with each nsw
machine.

That is changing, however. By 1977 technology had advanced to the point
where small microprocessor manufacturers considered adding floating-point
arithmetic to their chips. In an unprecedented move they turned to numerical
analysts for advice. The result was the formation of a subcommittee of the IEEE
Computer Society, IEEE Working Group P754, to draft a standard for binary
floating-point arithmetic. The final draft standard [Stevenson, 1982] specifies an
arithmetic system that differs radically from previous systems. Not only is it
free of anomalies, but it also contains new features specifically requested and
designed by numerical analysts with software experience. While the draft has
not yet become an official IEEE standard, it has become a de facto standard in
the industry. Chips (see, e.g., [Palmer and Marse, 1984]) and computers (not all
of them micros) based on the proposed standard are becoming common.

This work was so successful that the IEEE established a second working
group, P854, to draft a radix and format-independent floating-point standard
that would be upward compatible with the P754 draft. P854 Draft 1.0 has
recently been published [Cody et al., 1984] for public comment. Indeed, the
first implementation of the draft has already appeared in a powerful hand-held
computer [Hewlett-Packard, 1983]. Although the new draft is again intended for
microprocessors, its inclusion of non-binary arithmetics should interest
designers of larger equipment.

These, then, are the milestones leading to where we stand today: the early
work at isolated computing centers; the establishment of SICNUY; the two Pur-
due symposia; the establishment of commercial numerical software libraries;
the NATS project and the EISPACK package: the establishment of IFIP WG 2.5 and
of TOMS; the BLAS; the Oakbrook conference and the involvement of mathemati-
cal software people in drafting language standards, and the drafting of stan-
dards for floating-point arithmetic. Each of these events added something new
and important to the movement. There have also been some disappointments.
We mention in particular the failure to achieve tull professional recognition for
software work (especially at universities), the failure to fully exploit the NATS
experience, and the general lack of progress in mainframe arithmetic design.

3. THE PRESENT Today we are faced with a hardware and software revolution
that is rapidly changing what we can do and how we must do it. We are still con-
cerned about the production of high-quality transportable software, but we
expect more from such software than we did in the past. In addition, it must
perform on machines with bizarre new architectures. Vector and parzlel
“'supercomputers’’ and high-performance micros present new challenges that
must be met in new ways.

High-performance micros are mostly scaled-down, but souped-up von Neu-
man machines that we understand. The only unusual featurs appears to bz the
decent arithmetic; compilers are still unreliable on these machines, but we are

I

used to that. Thus, there is no technical reason why good numerical software
carnot be provided for these machines. IMSL, NAG and numerous othars ars
busily addressing this market. The only question is how important the market
will be. (We are privately guessing that it will be important.)

The "supercomputers' and new architecture machines are another matter,
however. A bewildering assortment of prototype and production hardware, and
of ''paper machines,”’ has descended upon us, differing in processor organiza-
tion, in memory organization, and in schemes for communicating between pro-
cessors. These are described using terms such as vector machines, array pro-
cessors, parallel machines, data flow machines, hypercubes, pipelined machines,
and MIMD machines. Floating-point operations are now as fast as memory
access on many of these machines, and we can no longer ignore access problems
when designing software. At first glance, writing high-performance software for
a given machine is difficult, and making that software transportable across
differing architectures is hopeless. Nevertheless, some pursue those goals with
encouraging preliminary results.

There are two or three main themes to this work. One possibility is to first
define and implement a virtual machine in software that is written in a high-level
language, but can be tailored to a specific machine architecture. This is the
approach now taken in TOOLPACK with TIE [Iles, 1984], and in automated reason-
ing with LMA [Lusk, McCune, and Overbeek, 1982]. Once software defining the
virtual machine has been moved and made eflicient, any software built on top of
it becomes available. In a sense, this is a generalization of what the BLAS do;
that is, once the BLAS have been moved and made eflficient, linear algebra pack-
ages built on them can be imported.

Unfortunately, this approach may not be suitable for numerical work. New
algorithms may be necessary to keep the machines busy at a respectable frac-
tion of their potential performance. In the case of linear algebra, one approach
to high-performance algorithms uses a handful of modular matrix-vector opera-
tions [Dongarra, 1984] as fundamental building blocks in much the same way
that the BLAS were previously used. High-level modules of this sort can be
designed to exploit parallel, pipelined, vector, or other architectures.

Additional difficulties are posed by parallel architectures where it is impor-
tant to identify candidates for independent computations, then to schedule and
coordinate them in such a way that available processors are used efficiently.
Surprisingly few additional control structures are needed when scheduling and
coordination are accomplished through monitors and macros [Lusk and Over-
beek, 1984].

All of this work is new. The references cited are only indicative of a
vigorous research field; they are not exhaustive, nor are the results obtainad so
far necessarily the best way to do things. Only time will tell. What is important
is that the software lessons of the past have not been forgotten in ths rush to
understand these new machines. The game is still to achieve both performance
and transportability without slighting either, despite dramatic differences in
machine architecture. For example, it is even possible to make a pipelined
MIMD] machine give vector performance with proper programming [Sorensen,
1984].

Meantime, work continues on thematic numerical software packages such
as those mentioned in the last section. We believe it is significant that most of
the early success in any numerical software endeavor has involved linzar alge-
bra programs. EISPACK, LINPACK, the BLAS, and the matrix-vector modules are
examples. It is true that linear algebra is a fundamental mathematical tool, and
that good software for other problem areas is not likely to be produced until

good linear algebra programs are ready. But it is also true that linear algebra
long ago reached an algorithmic maturity that invited software production. The
algorithms were well developed, well understood, and backed by error znalysis
that clearly displayed the limitations of software implementations.

Because the production of EISPACK required minimal algorithmic work, the
producers could concentrate on recasting algorithms to enhance desirabie
software attributes. The effort thus produced a significant software package
within three years of funding. In contrast, the MINPACK effort required abcut
five years to produce its first small package. This lengthy development time
reflects the difficulty of the task and is likely to be typical of future projects. As
in many other fields, prominent researchers in optimization do not agree on the
best algorithms; new methods frequently appear accompanied by confusing
claims of superiority over existing methods and programs. The situation is com-
mon in a vigorous, dynamic research field, but it does not encourage the quick
production of high-quality software. All the "'easy'’ implementations may have
been done already.

Despite these difficulties, we believe that some additional problem areas
could be harvested for software now. We are frankly puzzled by the lack of an
effort in ordinary differential equations, for example. Existing algorithms seem
to be well-enough understood, but no group has emerged with the necessary
dedication and support.

There is one other little-understood aspect of successful numerical software
projects that we believe to be important. Part of the variation in quality in the
numerous PACKs previously mentioned is due to an improper appreciation of a
fundamental lesson from the NATS project. We stated above that linear algebra
was in a good algorithmic position when the EISPACK work began. That does not
mean the field was stagnant, however; new algorithms were being introduced.
The project deliberately ignored new work because it felt that algorithms had to
prove themselves before being included. Further, the project found that there
is a one- to two-year delay between the completion of the first pass at software
and its final release. This time is spent iteratively testing, revising, and docu-
menting to ensure that the package does what it claims. Thus there must be a
one- to two-year moratorium on the introduction of new material into the pack-
age. This simple discovery has far-reaching implications. Algorithmic research-
ers find it almost impossible to observe such a moratorium; they ars intent on
wide distribution of their latest discoveries. Further, they cannot effectively
polish software they feel to be inferior. Therefore, control over software pro-
jects should be vested in individuals who understand and are dedicated to
software production rather than in individuals who primarily produce algo-
rithms. Algorithm producers should be involved in software packaging, but they
should not control it.

This approach has ancther advantage. Software packages benefit from a
uniformity of style that simplifies docurmnentation and maintenance. As EISPACK
demonstrated, different programs may contain large segments of code that can
be rendered almost identical, e.g., by using similar variable names and identical
labels. A package also benefits from a uniform philosophy for detecting and
reporting errors. The necessary surgery to produce package uniformity is best
done by someone with no particular attachment to the original programs.

Aside from algorithmic development, the most difficult problem facing us
today is testing. There are two fundamentally different reasons for tesiing,
hence two fundamentally different approaches. On the one hand, algorithm
creators want to show that their creations are in some way superior to existing
algorithms, and they approach performance testing as a contest. The tests they
design specifically highlight whatever advantage the new algorithm may have;

i1, ey

there is usually no attempt to uncover weaknesses in the algorithm or its imple-
mentation.

On the other hand, the selection of software for general use requires ccm-
plete performance evaluation. Usually some duplication of purpose is accept-
able in building a library, for example, so the concern is more with eliminating
unacceptable programs and in matching programs to problem characteristics
than in determining the "“best’’ program. Tests for this purpose should aggres-
sively exercise a program in ways that will detect weaknesses, dispiay strengtiis,
explore robustness, and probe problem-solving ability. We liken this type of
testing to a physical examination. Inevitably the results of such testing will be
used to compare programs, but the original intent is that a program be exam-
ined in isolation to stand or fall on its own merits.

Designing and implementing test programs is an important numerical prob-
lem that has been neglected in the rush to produce software for other purposes.
Software testing locates weaknesses and leads to improvements in the next
software generation. Yet, except for the ELEFUNT package of transportable For-
tran test programs for the elementary functions [Cody and Waite, 1980] and col-
lections of test programs for optimization software [Buckley, 1982; Moré, Gar-
bow, and Hillstrom, 1981}, no thematic test packages exist to our knowledge.
Some test materials are distributed with various PACKs mentioned earlier, but
these are not intended for general use.

The trouble is that we know little about how to test most types of software.

" Accuracy tests, for example, are usually battery tests exercising programs on

someone's haphazard collection of problems. Not only is this time-consuming,
but there is little purpose behind what is done, and the mass of data gathered
may be incomprehensible even to those who gathered it. We must find a better
way. We must back off from the problem and critically examine what we are
doing; every test should have a purpose. We must find understandable and use-
ful ways to present test results. (Note in this regard the clever use of Chernoff
faces [Chernoff, 1973] to summarize evaluations of software for solving systems
of nonlinear equations [Hiebert, 1982].)

There are some leads in the literature that may prove useful. J. Lyness and
J. Kaganove [1978] show that numerical software falls into two broad classes:
precision-bound programs implementing methods that guarantee to produce
results in a finite number of steps, and heuristic-bound programs implementing
algorithms for which useful results are not guaranteed in a finite number of
steps even with exact arithmetic. Programs in this second category are usually
limited in accuracy by the algorithm and not by machine arithmetic.

The importance of this classification is that accuracy test results for
precision-bound programs vary with the environment, while properly structured
accuracy tests for heuristic-bound programs produce system-independent
results when the accuracy achieved is sufficiently above machine limits. Thus
certain types of accuracy tests need be done only once and only on one system.

But accuracy testing is just part of a complete test packaze; efficiency and
robustness are also important. Where efficiency varies significantly from prch-
lem to problem, it is important to explore eflficiency as a function of the prob-
lem space. In its most elegant form to date, efliciency testing has been com-
bined with accuracy testing and parameterization of a probiem space to pro-
duce ''performance profiles.” The prototype work on automatic quadrature pro-
grams [Lyness and Kaganove, 1977] produced curves combiring probability cof
success and expected number of integrand evaluations as functions of requested
accuracy for specific parameterized problem families. Curves for a problem
family with features similar to those in a particular application should be uszful

10

in selecting a program for that application based on balancing requested accu-
racy and predicted cost against the probability of success. The concepts of
software classification and performance profiles exemplify the abstract assault
on evaluation procedures that we believe is essential to progress in this area.
Except for Lyness {1979], these ideas have not been exploited beyond the work
cited. We are not sure if the concepts are too complicated to be exploited, or if
they have simply been overlooked.

Concerns for numerical software have spawned important work in other
flelds as well. For example, research on the TAMPR system [Boyle and Matz,
1977] for automated program transformation and maintenance was specifically
motivated by early NATS work. TAMPR is intended to accept programs in certain
standard languages, map them into abstract forms, make transformations on
these abstract forms, and finally recover specific realizations of the transformed
programs in standard languages again. The transformations are limited concep-
tually only by our ability to describe what must be done. An early version of the
system was used to realize all versions of the LINPACK programs from complex
single-precision prototypes, for example. This application included enforcing
formatting conventions and selectively implanting either calls to BLAS or inline
coding with BLAS functionality, depending on the particular target computer
host. Ultimately the capabilities may include automatic translation from one
programming language to another by simply specifying different source and tar-
get languages in the first and last steps.

TAMPR is only one of many useful tools now under development. The TOOL-
PACK project is working on an extensive collection of integrated software tools
specifically designed to simplify the writing, testing, analyzing, and maintaining
of numerical software in Fortran. The package is to include formatters similar
to POLISH [Dorrenbacher et al., 19768, static analyzers similar to DAVE
[Osterweil and Fosdick, 1978] and PFORT [Ryder, 1974], dynamic analyzers simi-
lar to NEWTON [Feiber, Taylor, and Osterweil, 1980}, as well as parsers, lexers,
tools for instrumentation, text editors, and so on. The package is designed to be
portable and internally consistent in data requirements. As mentioned earlier,
portability is achieved by building the package atop a software virtual machine
written in Fortran, the TIE package. When it becomes available, TOOLPACK could
alter the way we work on mathematical software. Much depends on how easy the
package is to transport and use in comparison to the more familiar means of
software development. Release of a prototype version for evaluation and com-
ment is tentatively set for late 1984.

VWe earlier mentioned the work of the IEEE on standardization of floating-
point arithmetic for microprocessors. The fruits of this standardization effort
are just becoming available. In the meantime we continue to write numerical
software for existing computers. We can improve the portability of software by
explicitly including environmental dependencies in the source code. There have
been several attempts to establish a fundamental set of paramsters describing
arithmetic systems for this purpose. IFIP WG 2.5 published one proposal [Ford,
1978] that has proven unsatisfactory in many respects and has not been widely
used. A second proposal [Brown and Feldman, 1980] related to Brown's model
for floating-point arithmetic [Brown, 1981] has received important support in
some areas. The entire arithmetic model is embedded in Ada [Wichman, 19281],
for example, much to the consternation of some numerical analysts. We return
to that in a moment. Still a third proposal is being considered by the ANSI X3J3
Fortran Standards Committee for inclusion in the next Fortran standard. The
intent of this proposal is to deflne certain parameters and reserve their names
in the same way that SIN is a reserved name. The parameter names would then
be aliases for numerical values appropriate to the particular host environmert.

Y AT A Ty AL e AR

11

The difference between this proposal and the Ada approach is that here only the
names would be specified; the numerical values provided would be
implementation-dependent. While the parameters would be based on a model of
an arithmetic system, the model would not be imposed by the standard. Thus
the details of the model used in a particular situation could be chosen to fit the
circumstances. When portability is crucial, the model could be chesen to con-
servatively estimate machine parameters; when local performance is important,
the model could be chosen to closely approximate the local system. Such fexi-
bility is not available in the ADA approach, where the model specified must be
conservative to be universal.

The activities and concerns just outlined are typical of the mathematical
software effort today. The most exciting aspect is the rapid evolution of
hardware from micros to supercomputers, and the accompanying effort to
understand the software issues. Large software projects and ancillary activities
aimed at improving the environment for software production and use thrive. We
are not making much progress in testing methodology, however.

4. THE FUTURE We expect that the quantity and quality of numerical software
will continue to increase and that the activities just described will flourish in the
future. Advancing technology and even the present success of the numerical
software effort pose problems that must be overcome, however.

The most significant problem we face plagues every technical fleld: com-
munications. As we become more specialized, we lose touch with one another
and especially with potential customers.

Good communications with customers is crucial. Superb software is worth-
less unless software consumers are persuaded to use it. It is not enough to
make users aware of software existence, though that is a difficult task in itself;
consumer lethargy must be overcome at the same time. Consumers are reluc-

"tant to modify running programs unless they are convinced that the software

they are currently using is inferior enough to endanger their work and that the
new software will remove that danger. Fortunately, the appearance of radical
pew machines has lessened total dependence on existing software, and we now
have an opportunity to communicate with users who may listen. Publications in
the technical literature have never solved this type of communications problem,
however. The consumers we must reach are applications people who seldom
read numerical analysis or mathematical software literaturs. We must find
other ways to reach them.

Almost ten years ago the Albuquerque and Livermore branches of Sandia
Laboratories inserted library monitors in their operating systems [Bailey and
Jones, 1975] to provide information on who was using which routines and for
what. That information led to improvement of the library and to personal con-
tact when it appeared that a program was being misused, when program bugs
were found, or when better programs became available.

That approach is not a universal answer to our problem, however, because
we face a revolution in the way computers are being used. The small "persoreal”
computer is common. While it is often originally acquired for monitoring experi-
ments and gathering data, the temptation to use it for numerical purposes is
strong. This is especially true when the cost of using a central computing facil-
ity grows and the ‘'free’’ perscnal machine would otherwise sit idle. Such usage
is not necessarily bad; we have seen that smaller machines are approaching the
hardware capabilities of larger machines of only a few years ago. Soitware is the
problemn. Owners of such machines are frequently unaware of the good numeri-
cal libraries that are now becoming available. They, therefore, fraquently write

12

their own software or obtain it from friends. In this respect they operate as
large computing centers did twenty or more years ago. The scitware moverent
has completely lost whatever contact it may have had with these users, and that
contact will be difficult to regain.

One possibility may be to contribute to journals like Pyie that many cf
these people read. While some of the articles in these journals are written by
highly qualified people, much of the numerical advice is amateurish, refiectling
techniques that lost favor long ago. We cannot legitimately complain about this
situation unless we are willing as a profession to provide the proper advice and
software through these journals. We must be the ones to initiate communica-

tions with the users.

Unfortunately, we are also losing communications with thess who continue
to use larger machines. Often the original motivation for numerical softivare
work was provided by users with applications that were endangered by poor
computer programs. As our effort has matured, many of us have become more
concerned with software production for the sake of production and less con-
cerned about the real needs of users. We have tended to communicate arnong
ourselves and to neglect the users. Perhaps that behavior pattern is typical of a
new field. We hope that it will change in our fleld.

On the plus side, we are seeing more of the intensive numerical work being
done at remote sites where supercomputers are available. This concentrates
the work at a few locations, thus providing the opportunity for a few competent
numerical software people with dedication to influence many users.

At the technical level we have mentioned challenges posed by new computer
hardware. The diversity is exciting for numerical software people. IEEE-style
arithmetic systems, for example, must provide square root and med functions,
among others, that are as accurate as the usual arithmetic operations. Some
implementations include square root in the hardware, where it becomes no
more expensive to use than an ordinary division operation. This combination of
speed and accuracy in square root coupled with other features must influence
our selection of algorithms. I believe we will see dramatic changes in algo-
rithms, software, and even computer languages as these new systems become
common.

Overall we view the future with confidence and expectation We will prob-
ably never satisfactorily solve the communications problem, but we expect that
the quality of nurnerical software will continue to improve and that software pro-
duction will become easier as new tools and hardware appear.

5. REFERENCES

Aird, T. J. [1977]. “'The IMSL Fortran converter: an approach to solvirg pcrtabil-
ity problems.' Lecture Notes in Computer Science, Vol. 57 Porickility of
Numerical Software. Ed. W. Cowell. Springer-Verlag, New York, pp. 368-333.

Aird, T. J. [1984]. *'The IMSL Library."" Sources and Development of /Mathemati-
cal Software. Ed. W. R. Cowell. Prentice-Hall, Englewood Cliffs, New Jersesy,
pp. 264-301.

Bailey, C. B.,, and R. E. Jones [1975]. ''Usage and argument monitering of
mathematical library routines.”” ACH Trans. on Math. Saft. 1:198-203.

Boyle, J. M., W. J. Cody, W. R. Cowell, B. S. Garbow, Y. Ikebe, C. B. Moler, and B. T.

H
"64-020-SJ-N3 1oday soualog

Jspndwo) 1o juswnreds(opedoljo) jo AJ1sasATun ‘a4pmifog porjowayiopl An

-157E YLy Jo jueswdojeneq 10f woiboid ¥ [GLET] AOIPSO] '@ "I pUe 'Y ‘M '[[9M0)

‘K8sasp MaN ‘SPID poomsiBuy ‘reH-301jusad
‘e2zmif6S 15oi;swweyyT;i fo puswdciang pus S304nog .[:’%IJ ‘P Y M 'TIeMO)

'9EE-42E°9 '3S0S "YIOH U0 ‘SuD4]
w9y . suonljeindiioo ssaenbs ses] pajyfiamad L1sAnjeaa)l Jo}) saUNNoOIQNS. Jo
welsds ¥, [061] s3ered ' 'S PUR ‘BWS] A 'USEPEY ‘N 'PURIIOH ‘d "’ ‘Uemaje)

‘Aasas[maN 'sPI) poomajSuq '[TeH-eoNuUadd 'su0y
-cunf fluojuzwsjy ayy +of onuvy ssomifos ‘[0861] arey ‘M pue “p ‘M ‘Apo]

. '001-98:(¥)¥
‘cdsy FEE] . chieyilde juicd-Funyecy Joj pJepuels juapuadspul-yjfusipiom
pue -xipex pssodoad vy, [¥@61] UOsUsAslS ' Pue 'SIy N 4 ‘Jourmed °r
‘Disurdaey -y ‘ueyey ‘g ‘'YSnoy ‘q 'uosuey Yy 'deph "W ‘g ‘Wauoo) 'L, ‘f P ‘M 'Apo)

29-6% 'dd ‘Assaap maN ‘sPI) poomalfuyg ‘TeH-9s11usdg
Tesmo) 'Y ‘M 'PI -ssomyfog moorypwayoly Jfo juswdoisns puD Sao.nog
., S8UNNOI uonoun} ferosds jo afesioed e - NOVANNA.. ‘[ave6T] 't ‘M ‘4PoD

‘61-1 'dd *Aasiap m3aN 'sPI) poomaiduy 'TreH-so13uadd
TeM0) ¥ ‘M 'PI ‘aspmyfog moypwayrpl fo juswdolpnag pud Saounos
.'}I0[e aJem}jos Tedljelusyjlewl sy} uo suonealasqQ., ‘[ergel] T ‘M '£pod

‘g2-1 'dd
‘urjeg 'Seldop-188uladg MK 'V pue eulsse ') ‘d '‘PH "UOLIMPOL] a20m3foS
10NoWaBYIOY UL SaLb010poyIaly puD Swaqold ‘ZFI 104 '8ousloS Landwo) up
$a3j0N a.4njca7 ,,'sJemyjog reuonendwo) o) sydsouo) oiseq,, ‘[2861] T ‘M 'ApO)

‘@9EC-19€:69 'SSV ‘108 ‘4w ‘p . Areorydead eoeds
[euoisuswp-y ul sjutod jussaidsa o) sade] jo asn 3y, °[€L61] 'H 'Doulsy)

‘gge-g2e dd ‘uijzeg
‘Belaap-defuadg Aeamp ‘W P P 'senbuyos] Surwwosbosd 70 IDWBYIDN
Ewgpnyony ‘661 194 'SwaisAS T0NIDWIYIDH PUD SOUULOUCDY UL SBJ0N 8LNJ03T
. SUIo2[e uonjeziiuru Suryssy Jo) sfexoed siqertod y,, ‘[2g61] 'V 'Aepiong

‘€29
-010:g “3foS YppH uo suvi] poy ., woneindwod juiod-Suijecy Joj suonoung
o15eq pue sasjswered rejuswruodwug,, ‘[0861] wewped 1 'S Pue S "M ‘umoig

"08%-CH¥:L 3f0S YIDH U0 'Sup4l WOV .. 'UOT}
-exndwos juiod-uljeoy jo jspowt onysiead Inq sdwis vy, [1861] 'S ‘M 'umsoig

"HI0X MaN 'ufyooaq ‘ssaldd oTuysaliod buwesuruy aspmifog
az;ndwc)y AIXX wniscdwAs puouypudaiul [N 9y3 Jo sbulpassoud
,ssuoneziead weafoad oidnmuw Bunjewoiny,, ‘[2461] 21 "W pue "KW ‘© ‘sidod

‘ceg-0eg "dd 'jaox mapN ‘Arsuryoey Funnduwo) 10] UOIIRIOOSSY
fi 154 'ecueLafuc) IOV ITUCDN gL51 SOupaadtsd ,,'9Jem)jos [edljelayieul
8)°UIIaSSTp pUe £j13d80 0) jJops sanedoqelled e 'SIVN.. [aL61] wmnug

o5 oot v AR 3 S e s 11 e SR

\ el

14

Cowell, W. R., and L. D. Fosdick [1977]. "'Mathematical software producticn.”
Mathematical Software [II. Ed. J. R. Rice. Academic Press, New Yorx, ¢p.
195-224.

de Mao, 1. P. [1982]. *“Panel session on the challenges for developers of
mathematical software.'' Lecture Notes in Computer Science, Vol. 142, FPraob-
lems and Methodologies in Mathematical Software Production. Ed. P. C. Mes-
sina and A. Murli. Springer-Verlag, Berlin, pp. 254-271.

Dongarra, J. J. [1984]). “Increasing the performance of mathematical software
through high-level modularity.’’ To appear in Proceedings of the Sixth Inter-
national Symposium on Computing Methods in Engineering and Applied Sci-
ences, held in Versailles, France, North-Holland.

Dongarra, J. J., and C. B. Moler {1984]. "EISPACK - a package for solving matrix
eigenvalue problems.’' Sources end Development of Mathematical Softwcre.
Ed. W. R. Cowell. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 68-87.

Dongarra, J.J., and G. W. Stewart [1984]. “'LINPACK - a package for solving linear
systems."’ Sources and Development of Mathematical Software. Ed. W. R.
Cowell. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 20-48.

Dorrenbacher, J., D. Paddock, D. Wisneski, and L. D. Fosdick [1976]. POLISH, a
Program to Edit Fortran Programs. University of Colorado Department of
Computer Science Report CU-CS-050-76 (Rev.).

Du Croz J. J., S. J. Hague, and J. L. Siemieniuch [1977]. “Aids to portability
within the NAG project.” Lacture Notes in Computer Science, Vol. 57, Porta-
bility of Numerical Software. Ed. W. Cowell. Springer-Verlag, New York, pp.
390-404.

Feiber, J., R. N. Taylor and L. J. Osterweil [1980]. NEWTON - A Dynamic Testing
System for Fortran 77 Programs; Preliminary Report. University of
Colorado Department of Computer Science Technical Note.

Ford, B. [1978]. *'Parameterization of the environment for transportable numer-
ical software.”” ACM Trans. on Math. Soft. 4:100-1C3.

Ford, B., and J. C. T. Pool [1984]. ''The evolving NAG library service." Sources
and Development of Mathematical Software. Ed. W. R. Cowell. Prentice-Hall,
Englewood Cliffs, New Jersey, pp. 375-397.

Forsythe, G. [1988]. ''Algorithms for scientific computation.” Comm. ACH
9:255-258.

Fox, P. [1984]. “The PORT mathematical subroutine library.” Sources cnd
Development of Mathematical Software. Ed. W. R. Cowzll. Prentice-Hall,
Englewcod Cliffs, New Jersey, pp. 348-374.

Gear, C. W. [1979]). Numerical Software: Science or Alchemy? University of Illi-
nois Department of Computer Science Report UIUCDCS-R-79-963.

George, A, and J. W. Liu [1981]. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, Englewood Cliffs, New Jersey.

15

Grimes, R. G., D. R. Kincaid, W. I. MacGregor, and D. M. Young [1978]. ITPACK
Report: Adaptive Iterative Algorithms Using Symmeiric Sparse Storage.
Center for Numerical Analysis, University of Texas at Austin Report CNA-1239.

Hewlett-Packard [1983]. HP-71 Owner’'s Manual. Hewlett-Packard, Corvalis,
Oregon.

Hiebert, K. L. [1982]. "An outline for comparison testing of mathematical
software — illustrated by comparison testings of software which solves sys-
tems of nonlinear equations.”’ Lecture Notes in Economics and Jathematical
Systems, Vol. 199, Fvaluating Mathematical Programming Technigues. Ed.
J. M. Mulvey. Springer-Verlag, Berlin, pp. 214-225.

Huddleston, R. E., ed. [1979]. Program Directions for Computational Mathemat-
ics. Unnumbered report, Dept. of Energy, Washington, D.C.

lles, R. M. J. [1984]. What is T/E? Numerical Algorithms Group Report
NAG/T12-W1iT.

Krogh. F. T. [1977]. "Features for Fortran portability.”" Lecture Notes in Com-
puter Science, Vol. 57, Portability of Numerical Software. Ed. W. Cowell.
Springer-Verlag, New York, pp. 361-367.

Lawson, C. L., R. J. Hanson, D. R. Kincaid and F. T. Krogh [1979]. *Basic linear
algebra subprograms for Fortran usage.”” ACM Trans. on Math. Saoft. 5:308-
323.

Lusk, E., W. McCune, and R. Overbeek [1982)]. "Logic machine architecture:
inference mechanisms.”’ Lecture Notes in Computer Science, Vol. 138,
Proceedings of the Sixth Conference on Automated Deduction. Ed. D. W.
Loveland. Springer-Verlag, New York, pp. 85-105.

Lusk, E., and R. Overbeek [1984]. - Use of Monitors in FORTRAN: A Tutorial on the
Barrier, Self-scheduling DO-Loop, and Askfor Monitors. Argonne National
Laboratory Report ANL-84-51.

Lyness, J. N. [1979]. "’'A bench mark experiment for minimization algorithms."
Math. Comp. 33:249-264.

Lyness, J. N., and J. J. Kaganove [1976]. ''Comments on the nature of automatic
quadrature routines.'” ACM Trans. on Math. Soft. 2:65-81.

Lyness, J. N., and J. J. Kaganove [1977]). "A technique for comparing automatic
quadrature routines.’”’ Computer J. 20:170-177.

Machura, M., and R. A. Sweet [1980]. "A survey of software for partial
differential equations.’’ ACM Trans. on Math. Soft. 6:461-483.

Moré, J. J., B. S. Garbow, and K. E. Hillstrom [1981]. “'Testing unconstrained
optimization soltware.” ACHM Trans. on Math. Soft. 7:17-41.

Moré, J. J., D. Sorensen, B. S. Garbow, and K. E. Hillstrom [1984]. “'The MINPACK
project.”” Saurces and Development of Mathemalical Softwars. Ed. W. R
Cowell. Prentice-Hall, Englewood Clifls, New Jersey, pp. 88-111. .

18

Morris, A. H., Jr. [1979]. Development of Mathematical Software and Mathemzti-
cal Software Libraries. Naval Surface Weapons Center Report NSWC TR 72-
102.

Osterweil, L. J. [1983]. “TOOLPACK - an experimental sofiware development
gnsvigonment research project.”” JEEE Trans. on Software FEngineering,
:673-685.

Osterweil, L. J., and L. D. Fosdick [1976]. "'DAVE — a validation, error detection
and documentation system for Fortran programs.' Software Practice acnd
Ezperience 6:473-4886.

Palmer, J. F., and S. P. Morse [1984]. The 8087 Primer. John Wiley and Sons,
New York.

Piessens, R., E. De Doncker, C. Uberhuber, and D. K. Kahaner [1983]). Springer
Series in Computational Mathematics, Vol. 1, QUADPACK - A Subroutine
Package for Automatic Integration. Springer-Verlag, New York.

Rice, J. R. [1969]. ‘'Announcement and call for papers, mathematical software.”
SIGNUM Newsletter 4 (3):7.

Rice, J. R, ed. [1971]. Mathematical Software. Academic Press, New York.

Rice, J. R. [1977]. "ELLPACK: a research tool for elliptic partial differential
equations software.'' Mathematical Software III. Ed. J. R. Rice. Academic
Press, New York, pp. 319-341.

Rice, J. R. [1979]. 'Software for numerical computation.’”’ Research Directions
in Software Technology. Ed. P. Wegner. MIT Press, Cambridge, Mas-
sachusetts, pp. 688-708.

Rice, J. R., C. W. Gear, J. M. Ortega, B. N. Parlett, M. Schultz, L. F. Shampine, and
P. Wolfe [1978]. Numerical Computation, Panel Report for the COSERS Pro-
ject. Special issue SIGNUM Newsletter.

Ryder, B. G. [1974]. *'The PFORT verifier.”” Software Practice and Erperience
4:359-377.

SCCS [1975]). PDEPACK: Partial Differential Equations Package User's Guide.
Scientific Computing Consulting Services, Manhattan, Kansas.

Smith, B. T., J. M. Boyle, and W. J. Cody [1974]. ''The NATS approach to quality
software.”” Software for Numerical Mathematics. Ed. D. J. Evans. Acadermic
Press, New York, pp. 393-405.

Sorensen, D. [1984]. ''Buffering for vector performance on a pipelined MIMD
machine.”” To appear in Parallel Computing.

Stevenson, D., Chairman IEEE P754 [1982]. "A proposed standard for binary
floating-point arithmetic, draft 10.0," /EEE Floating Point Subcommittee
Working Document P754/82-8.6. A copy of this draft is available from R. Far-
pinski, U-78, University of California, San Francisco, CA 94143. Draft 10.0
supercedes Draft 8.0 published as ‘A proposed standard for binary floating-
point arithmetic,"" Computer 14 (3):51-62.

i-
)-

[S9g=

ce

ity
ze

VD

rry
tee

i@ o8

17

Swarztrauber, P., and R. Sweet [1979]. '"Efficient FORTRAN subroutines for the

solution of separable elliptic equations. Algorithr §21."" ACH Traons. cn J/ziA
Saft. 5:352-364

Wichman, B. A, [1981]. Tutorial Material on the Feal Data-Typzs in ADA. Final
Technical Report, U.S. Army European Research Office, London.

Wilkinson, J. H., and C. Reinsch, eds. [1971]. HenzZdook for 4utomctic Computaz-
tion, Vol. /I, Linear Algebra. Springer-Verlag, New York.

