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PART I

Broad historical outline



The prehistory of Numerical Analysis

In contrast to more classical fields of mathematics, like

Analysis, Number Theory or Algebraic Geometry, Numerical

Analysis (NA) became an independent mathematical disci-

pline only in the course of the 20th Century.

This is perhaps surprising, given that effective methods of

computing approximate numerical solutions to mathematical

problems are already found in antiquity (well before Euclid!),

and were especially prevalent in ancient India and China.

While algorithmic mathematics thrived in ancient Asia, classical Greek

mathematicians showed relatively little interest in it and cultivated Ge-

ometry instead. Nevertheless, Archimedes (3rd Century BCE) was a

master calculator.



The prehistory of Numerical Analysis (cont.)

Many numerical methods studied in introductory NA courses

bear the name of great mathematicians including Newton,

Euler, Lagrange, Gauss, Jacobi, Fourier, Chebyshev, and so

forth.

However, it should be kept in mind that well into the

19th Century, the distinction between mathematics and

natural philosophy (including physics, chemistry, astronomy

etc.) was almost non-existent. Scientific specialization is a

modern phenomenon, and nearly all major mathematicians

were also physicists and astronomers.

Indeed, a look at the original works of these great mathematicians shows

that almost without exception, the numerical methods bearing their

names were introduced in the context of physical, astronomical or tech-

nical applications.



An example: Newton interpolation

In Book III, Lemma V, of his 1687 masterpiece, Math-

ematical Principles of Natural Philosophy, Isaac Newton

(1642-1727) poses the following problem:

To find a curved line of the parabolic kind which shall pass

through any given number of points.

(Note: here parabolic = polynomial).

After solving the problem by constructing the interpolating

polynomial by divided differences, he proceeds to apply it in

the subsequent Lemma VI to the problem:

Certain observed places of a comet being given, to find the

place of the same at any intermediate given time.



An example: Newton interpolation (cont.)



An example: Newton interpolation (cont.)



The prehistory of Numerical Analysis (cont.)

Beginning with the second half of the 19th Century,

mathematician becomes almost synonymous with pure

mathematician. Most mathematics becomes conceptual

and far removed from applications. Numerical methods

are developed out of necessity to solve problems arising in

geodesy, astronomy, physics and engineering. Examples:

• In Linear Algebra we have Gauss–Jordan elimination for

Ax = b (Geodesy) and Jacobi’s methods for Ax = b and

Ax = λx (Celestial Mechanics);

• In Ordinary Differential Equations, we have the methods

of Adams and Moulton (Celestial Mechanics) and Runge–

Kutta (Aerodynamics);

• In PDEs, the Rayleigh–Ritz method (vibration problems

in Acoustics and Elasticity).



The prehistory of Numerical Analysis (cont.)

This situation persists in the first few decades of the 20th

Century. NA is not recognized as a mathematical discipline;

university professorships and courses are non-existent,

textbooks are scarce, and computing machines are primitive.

Early books on numerical methods are:

1. E. T. Whittaker and G. Robinson, The Calculus of Obser-

vations. A Treatise on Numerical Mathematics, London,

1924.

2. G. Cassinis, Calcoli Numerici, Grafici e Meccanici, Pisa,

1928.

3. J. B. Scarborough, Numerical Mathematical Analysis,

Baltimore, 1930.

These books are mostly aimed at scientists and engineers.



The prehistory of Numerical Analysis (cont.)

It should be kept in mind that before the invention of

electronic digital computers (mid-1940s), computations

were done by hand, by slide ruler, by desk calculators and,

in the first part of the 20th Century, by electro-mechanical

and analogical devices.

Two excellent references on the early history of NA and

Computing are:

H. H. Goldstine, A History of Numerical Analysis from the

15th Through the 19th Century, Springer, New York, 1977.

H. H. Goldstine, The Computer from Pascal to von Neumann,

Princeton University Press, Princeton, NJ, 1972.



The first large-scale electronic computer: ENIAC (1945)

ENIAC = Electronic Numerical Integrator and Computer



Key Moments of 20th Century Numerical Analysis

Modern NA begins in the 1940s, as a result of two related

events: the participation of large numbers of mathemati-

cians in the war effort (especially in USA, Germany, USSR),

and the development of the first digital electronic computers.

However, some important pre-war developments should be

mentioned here:

• The analysis of finite difference methods for PDEs:

Richardson (1910); Phillips and Wiener (1923); Courant,

Friedrichs and Lewy (1928).

• The emergence of a school of applied mathematics

in Germany, mostly through the efforts of Felix Klein

(Göttingen: Runge, Courant; Berlin: von Mises).

• The creation, in Italy, of the first research institute en-

tirely devoted to NA (Picone, late 1920s).



Key Moments of 20th Century NA (cont.)

In the States, very little work in Applied Mathematics

was done prior to the late 1930s. The situation changed

dramatically as a result of the influx of European refugees,

especially from Nazi Germany, beginning in 1933. Many of

these scientists were to give a major contribution to the war

effort.

The pre-eminent figure here is perhaps Richard Courant

(1888–1972), who was the successor of David Hilbert

(1862–1943) as the director of the famous Mathematical

Institute in Göttingen.

In the period 1900–1930, the University of Göttingen had established

itself as one of the great centers for research in mathematics and physics

worldwide. During the 19th Century, the mathematics faculty included

Gauss, Dirichlet, Riemann and Klein. In the 1920s, Göttingen became a

leading center for research in quantum physics.



Richard Courant (1888–1972)



Key Moments of 20th Century NA (cont.)

Two famous papers on finite differences:

L. F. Richardson, The approximate arithmetical solution by

finite differences of physical problems involving differential

equations with an application to stresses in a masonry dam,

Philosophical Transactions of the Royal Society of London,

A, 210 (1910), pp. 307–357.

R. Courant, K. O. Friedrichs, and H. Lewy, Über die partiellen

Differenzengleichungen der mathematischen Physik, Mathe-

matische Annalen 100 (1928), pp. 32–74. Translated by

Phyllis Fox as: On the partial difference equations of mathe-

matical physics, IBM Journal of Research and Development,

11 (1967), pp. 215–234. With a commentary by P. D. Lax.



Key Moments of 20th Century NA (cont.)

The celebrated CFL paper used finite differences not to

solve practical problems, but to establish existence and

uniqueness results for elliptic boundary value and eigenvalue

problems, and for the initial value problem for hyperbolic

and parabolic PDEs. It also introduced for the first time the

method of random walks for approximating the solution of

PDEs.

This paper was to have enormous influence on the numerical

analysis of PDEs, especially through the work of John von

Neumann at Los Alamos at the time of the Manhattan

Project.

The paper also influenced the development by John Curtiss in the early

1950s of Monte Carlo methods for evaluating (functionals of) solutions

of PDEs.



A quote from the CFL paper

From the Introduction:

Nowhere do we assume the existence of the solution to the

differential equation problem—on the contrary, we obtain a

simple existence proof by using the limiting process. For the

case of elliptic equations convergence is obtained indepen-

dently of the choice of the mesh, but we will find that for

the case of the initial value problem for hyperbolic equations,

convergence is obtained only if the ratio of the mesh widths

in different directions satisfies certain inequalities which in

turn depend on the position of the characteristics relative to

the mesh.



A quote from the CFL paper (cont.)

From Part II, section 2:

In the same way that the solution of a linear hyperbolic equa-

tion at a point S depends only on a certain part of the initial

line—namely the “domain of dependence” lying between the

two characteristics drawn through S, the solution of the dif-

ference equation has also at the point S a certain domain of

dependence... We shall now consider a (...) general rectan-

gular mesh with mesh size equal to h (time interval) in the

t-direction and equal to kh (space interval) in the x-direction,

where k is a constant. The domain of dependence for the

difference equation (...) for this mesh will now either lie

entirely within the domain of dependence of the differential

equation, ∂2u/∂t2 − ∂2u/∂x2 = 0, or on the other hand will

contain this latter region inside its own domain according as

k < 1 or k > 1 respectively.



A quote from the CFL paper (cont.)

From this follows a remarkable fact: if for the case k < 1

one lets h → 0, then the solution to the difference equation

in general cannot converge to the solution of the differential

equation... That convergence does occur for the case k > 1

will be proved in Section 3.

The authors explain that this is due to the fact that if

k < 1, a change in the initial values of the solution of the

differential equation at points of the t = 0 line between the

two domains of dependence must change the solution of the

differential equation, but cannot influence the solution of

the difference equation.

This is, of course, the famous CFL condition.



Key Moments of 20th Century NA (cont.)

Another very influential paper by Courant appeared during

the war:

R. Courant, Variational methods for the solution of problems

of equilibrium and vibrations, Bull. Amer. Math. Soc., 69

(1943), pp. 1–23.

This paper contains many of the ideas of what later became

known as finite element methods. The full development

of FEMs, however, began around 1960 at the hand of

aerospace and civil engineers (Felippa & Clough, UC

Berkeley; Zinkiewicz and Irons, UK; Argyris, Germany).

Mathematically, the FEM is a modern development of the

classical methods of Rayleigh, Ritz, and Galerkin.



A quote from Courant’s 1943 paper

From Part III, p. 15:

If the variational problem contains derivatives not higher than

the first order the method of finite differences can be sub-

ordinated to the Rayleigh-Ritz method by considering in the

competition only functions φ which are linear in the meshes of

a sub-division of our net into triangles formed by diagonals of

the squares of the net. For such polyhedral functions the in-

tegrals become sums expressed by the finite number of values

of φ in the net-points and the minimum condition becomes

our difference equations. Such an interpretation suggests a

wide generalization which provides great flexibility and seems

to have considerable practical value.



A quote from Courant’s 1943 paper (cont.)

Instead of starting with a quadratic or rectangular net

we may consider from the outset any polyhedral surfaces

with edges over an arbitrarily chosen (preferably triangular)

net. Our integrals again become finite sums, and the

minimum condition will be equations for the values of φ

in the net-points. While these equations seem less simple

than the original difference equations, we gain the enormous

advantage of better adaptability to the data of the problem

and thus we can often obtain good results with very little

numerical calculation.

These are prophetic words indeed!



Key Moments of 20th Century NA (cont.)

Another key figure is that of John von Neumann, who came

to the US in the early 1930s to join the newly formed Institute

for Advanced Studies in Princeton, NJ. Other members ot the

IAS included Albert Einstein and Hermann Weyl.

A Hungarian-born child prodigy, von Neumann initially worked with Hilbert

on mathematical logic, the foundations of mathematics, and the rigor-

ous formulation of quantum mechanics. He also worked on topological

groups, rings of operators, ergodic theory and many other areas of pure

mathematics.

In applied mathematics he created the field of game theory (with the

economist Oskar Morgenstern) and did fundamental work in hydrody-

namics, meteorology, numerical linear algebra, and numerical PDEs. He

is, however, best known for his work on the logical design of digital com-

puters and his theory of automata.



John von Neumann (1903–1957)

A giant of 20th Century mathematics.



Stan Ulam, Richard Feynman and John von Neumann

(Bandelier, near Los Alamos, NM, late 1940s)

Three key figures in 20th Century science.



von Neumann’ IAS Computer (Princeton, 1952)

A clone of this machine was installed at Los Alamos

(MANIAC = Mathematical Analyzer, Numerical Integrator and Computer)



Key Moments of 20th Century NA (cont.)

Among von Neumann’s contributions to NA and scientific

computing we mention:

1. The well-known von Neumann stability condition (based

on Fourier analysis) for the time-integration of evolution

problems

2. Pioneering work (mostly with H. Goldstine) in numerical

linear algebra

3. Early contributions to linear programming (later devel-

oped by Dantzig and others)

4. The development (with Metropolis and Ulam) of the

Monte Carlo method

Owing to his enormous prestige as a great mathematician, von Neumann

is often cited as one of the main factors making NA acceptable as a bona

fide mathematical discipline (and not just a collection of recipes).



Key Moments of 20th Century NA (cont.)

J. von Neumann and H. H. Goldstine, Numerical inverting of

matrices of high order, Bull. Amer. Math. Soc., 53 (1947),

pp. 1021–1099.

This long paper is considered by many to mark the beginning

of modern numerical linear algebra. It is mostly devoted to

a detailed round-off error analysis of matrix factorization

and inversion methods. Among other things, it introduces

the notion of condition number κ(A) of an SPD matrix with

respect to inversion. The paper also marks the first use of

backward error analysis, later greatly developed and widely

applied by Wilkinson.

At about the same time (1948), a paper by Alan Turing

provided a similar analysis of Gaussian elimination.



A quote from von Neumann and Goldstine (1947)

From the Preface:

The purpose of this paper is to derive rigorous error esti-

mates in connection with the inverting of matrices of high

order. The reasons for taking up this subject at this time

in such considerable detail are essentially these: First, the

rather widespread revival of mathematical interest in numeri-

cal methods, and the introduction of new procedures and de-

vices which make it both possible and necessary to perform

operations of this type on matrices of much higher orders

than was even remotely practical in the past. Second, the

fact that considerably diverging opinions are now current as

to the extremely high or extremely low precisions which are

required when inverting matrices of order n ≥ 10.



Key Moments of 20th Century NA (cont.)

Numerical linear algebra also received great impetus from

the establishment on the UCLA campus of the Institute for

Numerical Analysis of the National Bureau of Standards

(1947-1954).

Among the main figures associated with INA we mention

George Forsythe, Cornelius Lanczos, Isaac Schoenberg, Olga

Taussky-Todd, John Todd, Magnus Hestenes, and Eduard

Stiefel.

Both the Lanczos algorithm and the Conjugate Gradient

method date to this exciting period. Their widespread use,

however, will have to wait until the 1970s.



Cornelius Lanczos (1893–1974)



Magnus Hestenes and Eduard Stiefel

Co-discoverers of the Conjugate Gradient Method.



Key Moments of 20th Century NA (cont.)

Other notable figures in numerical linear algebra in the

1950s and 1960s include Wallace Givens (Argonne), Alston

Householder (Oak Ridge), Jim Wilkinson (NPL, UK), Heinz

Rutishauser (ETH Zurich), Alexander Ostrowski (Basel),

John Francis (UK), and Vera Kublanovskaya (USSR); stable

and efficient methods for linear systems and eigenvalue

calculations are due to them.

Important contributions to the area of iterative methods in

this period are due to David Young, Richard Varga, and

Gene Golub.

In the mid-60s, fundamental work by Golub, Velvel Kahan and

others led to stable algorithms for SVD-based least-squares

and pseudoinverse calculations.



1964 Gatlinburg Conference

Emilie Haynsworth, Alan Hoffman, Olga Taussky-Todd and Gene Golub.



Key Moments of 20th Century NA (cont.)

The 1950s also see great progress in the analysis of

finite difference methods for PDEs (including the famous

equivalence theorem of Peter Lax) and the development

of Alternating Direction Implicit (ADI) and splitting-up

methods by Peaceman, Rachford, Douglas, Birkhoff, Varga,

Young in USA and by Yanenko and others in USSR.

Together with the SOR method, ADI schemes are the method of choice

for the numerical solution of discretized PDEs during much of the 1950s

and 1960s. Only in the 1970s will the Conjugate Gradient method gain

favor, especially after the development of incomplete Cholesky precondi-

tioning. Much credit here goes to John Reid (UK), Koos Meijerink and

Henk van der Vorst (Netherlands), and to a 1976 paper by Gene Golub,

Paul Concus and Dianne O’Leary.



Key Moments of 20th Century NA (cont.)

In the 1960s and 1970s a class of (non-iterative) methods for

solving the Poisson equation on regular grids in near-optimal

time is developed by Buneman, Golub, Buzbee, Nielson

and others. These techniques are closely related to cyclic

reduction and the Fast Fourier Transform (FFT) of Cooley

and Tuckey (1965).

These fast Poisson solvers will later be superseded by

variants of the multigrid method, first studied in USSR by

Fedorenko and Bakhvalov in the 1960s, and later by Achi

Brandt, Wolfgang Hackbusch, and many others.

Chief applications of PDE solvers during this period are in the

areas of nuclear reactor modeling and petroleum engineering.



Key Moments of 20th Century NA (cont.)

The 1980s and 1990s see rapid developments in the field of

Krylov subspace methods for nonsymmetric linear systems

(Young, Saylor, Sonneveld, Eisenstat, Elman, Schulz,

Saad, Freund, Nachtigal, van der Vorst), preconditioning,

multilevel algorithms, and large-scale eigenvalue solvers.

On the theory side, the important Faber-Manteuffel Theo-

rem (1984) settles a question of Golub on the existence of

optimal Krylov methods based on short recurrences.

We also mention the impact of parallel computing, stimulat-

ing the development of domain decomposition schemes by

Lions, Widlund, and many others.



Additional references and resources

G. Birkhoff, Solving Elliptic Problems: 1930–1980, in M. H. Schulz, Ed.,
Elliptic Problem Solvers, Academic Press, NY, 1981.

C. Brezinski and L. Wuytack, Eds., Numerical Analysis: Historical
Developments in the Twentieth Century, North-Holland, Amsterdam,
2001.

M. R. Hestenes and J. Todd, Mathematicians Learning to Use Comput-
ers. The Institute for Numerical Analysis, UCLA, 1947–1954. National
Institute of Standards and Technology and Mathematical Association of
America, Washington, DC, 1991.

S. G. Nash, Ed., A History of Scientific Computing, ACM Press and
Addison-Wesley Publishing Co., NY, 1990.

The SIAM History Project at http://history.siam.org contains a number
of articles and transcripts of interviews—highly recommended!



PART II

The early history of matrix iterations



Iterative methods prior to about 1930

The earliest reference to an iterative approach to solving

Ax = b appears to be contained in a letter by Gauss to his

student Gerling dated 26 December 1823, in the context of

solving least squares problems via the normal equations.

After briefly describing his method (essentially a relaxation

procedure) on a 4× 4 example, Gauss wrote:

You will in future hardly eliminate directly, at least not when

you have more than two unknowns. The indirect procedure

can be done while one is half asleep, or is thinking about

other things.

Cf. Werke, IX, p. 278. See also E. Bodewig, Matrix Calculus,

1956.



Iterative methods prior to about 1930 (cont.)

In 1826 Gauss gave a block variant of the method in the

Supplementum to his famous work on least squares, Theoria

Combinationis Observationum Erroribus Minimis Obnoxiae

(English translation by Pete Stewart published by SIAM in

1995).

Solution of normal equations by iteration became stan-

dard in 19th Century Germany, especially among geodesists

and astronomers (including Gerling, Bessel, Schumacher,...).

According to Bodewig, Gauss had to solve systems with 20-30-40 un-

knowns. These systems were diagonally dominant and convergence was

fast. In 1890, Nagel used iteration to solve a system of 159 unknowns

arising in the triangulation of Saxony.



Iterative methods prior to about 1930 (cont.)

In 1845 Jacobi introduced his own iterative method, again

for solving normal equations for least squares problems

arising in astronomical calculations.1

In the same paper he makes use of carefully chosen plane

rotations to increase the diagonal dominance of the co-

efficient matrix. This is perhaps the first occurrence of

preprocessing of a linear system in order to speed up the

convergence of an iterative method. He gives a 3×3 example.

Only in a subsequent paper (1846) he will use plane rotations

to diagonalize a symmetric matrix.

1Über eine neue Auflösungsart der bei der Methode der klein-

sten Quadrate vorkommenden linearen Gleichungen, Astronomische

Nachrichten, 22 (1845), 297–306. Reprinted in Gesammelte Werke, vol.

III, pp. 469–478.



Jacobi’s example

Jacobi takes for his example a linear system that appears in

Gauss’ Theoria Motus Corporum Coelestium in Sectionibus

Conicis Solem Ambientium (1809).

In modern notation, Jacobi wants to solve Ax = b where

A =

 27 6 0
6 15 1
0 1 54

 and b =

 88
70

107

 .
Jacobi uses a plane rotation (with angle α = 22o 30′) to anni-

hilate the (1,2)-(2,1) coefficient. After this, the transformed

system is solved in three iterations of Jacobi’s method. Each

iteration adds about one digit of accuracy.



Iterative methods prior to about 1930 (cont.)

Again in the context of least squares, in 1874 another

German, Seidel, publishes his own iterative method.

The paper contains what we now (inappropriately) call

the Gauss–Seidel method, which he describes as an

improvement over Jacobi’s method.

Seidel notes that the unknowns do not have to be pro-

cessed cyclically (in fact, he advises against it!); instead,

one could choose to update at each step the unknown

with the largest residual. He seems to be unaware that

this is precisely Gauss’ method.

In the same paper, Seidel mentions a block variant of his scheme. He

also notes that the calculations can be computed to variable accuracy,

using fewer decimals in the first iterations. His linear systems had up

to 72 unknowns.



Iterative methods prior to about 1930 (cont.)

Another important 19th Century development that is

worth mentioning were the independent proofs of con-

vergence by Nekrasov (1885) and by Pizzetti (1887) of

Seidel’s method for systems of normal equations (more

generally, SPD systems).

These authors were the first to note that a necessary and

sufficient condition for the convergence of the method

(for an arbitrary initial guess x0) is that all the eigenvalues

of the iteration matrix must satisfy |λ| < 1. Nekrasov

and Mehmke (1892) also gave examples to show that

convergence can be slow.

Nekrasov seems to have been the first to relate the rate of convergence

to the dominant eigenvalue of the iteration matrix. The treatment is

still in terms of determinants, and no use is made of matrix notation.



Iterative methods prior to about 1930 (cont.)

In the early 20th century we note the following important

contributions:

• The method of Richardson (1910);

• The method of Liebmann (1918).

These papers mark the first use of iterative methods in

the solution of finite difference approximations to elliptic

PDEs.

Richardson’s method is still well known today, and can be

regarded as an acceleration of Jacobi’s method by means

of over- or under-relaxation factors. Liebmann’s method

is identical with Seidel’s.



Iterative methods prior to about 1930 (cont.)

The first systematic treatment of iterative methods

for solving linear systems appeared in a paper by the

famed applied mathematician Richard von Mises and his

collaborator (and later wife) Hilda Pollaczek-Geiringer,

titled Praktische Verfharen der Gleichungsauflösung

(ZAMM 9, 1929, pp. 58–77).

This was a rather influential paper. In it, the authors

gave conditions for the convergence of Jacobi’s and

Seidel’s methods, the notion of diagonal dominance

playing a central role.

The paper also studied a stationary version of Richard-

son’s method, which will be later called Mises’ method

by later authors.



Richard von Mises and Hilda Pollaczek-Geiringer

Two pioneers in the field of iterative methods.



Mauro Picone and the INAC

The paper by von Mises and Pollaczek-Geiringer was

read and appreciated by Mauro Picone (1885-1977)

and his collaborators at the Istituto Nazionale per le

Applicazioni del Calcolo (INAC).

The INAC was among the first institutions in the

world entirely devoted to the development of numerical

analysis. Both basic research and applications were

pursued by the INAC staff.

The Institute had been founded in 1927 by Picone, who was at that

time professor of Infinitesimal Analysis at the University of Naples.

In 1932 Picone moved to the University of Rome, and the INAC was

transferred there. It became a CNR institute in 1933.



Mauro Picone and the INAC (cont.)

Picone’s interest in numerical computing dated back to

his service as an artillery officer in WWI, when he was

put to work on ballistic tables.

The creation of the INAC required great perseverance

and political skill on his part, since most of the mathe-

matical establishment of the time was either indifferent

or openly against it.

Picone’s own training was in classical (“hard”) analysis. He worked

mostly on the theory of differential equations and in the calculus of

variations. He was also keenly interested in constructive and compu-

tational functional-analytic methods.



Mauro Picone in 1903



Mauro Picone around 1950



Mauro Picone and the INAC (cont.)

Throughout the 1930’s and beyond, under Picone’s

direction, the INAC employed a number of young math-

ematicians, many of whom later became very well known.

INAC researchers did basic research and also worked on

a large number of applied problems supplied by industry,

government agencies, and the Italian military. Picone was

fond of saying that

Matematica Applicata = Matematica Fascista

In the 1930s the INAC also employed up to eleven computers and

draftsmen. These were highly skilled men and women who were

responsible for carrying out all the necessary calculations using a

variety of mechanical, electro-mechanical, and graphical devices.



Mauro Picone and the INAC (cont.)

As early as 1932, Picone designed and taught one of

the first courses on numerical methods ever offered

at an Italian university (the course was called Calcoli

Numerici e Grafici). The course was taught in the

School of Statistical and Actuarial Sciences, because

Picone’s colleagues in the Mathematics Institute denied

his request to have the course listed among the electives

for the degree in Mathematics.

The course covered root finding, maxima and minima,

solutions of linear and nonlinear systems, interpolation,

numerical quadrature, and practical Fourier analysis.

Both Jacobi’s and Seidel’s method are discussed (including block

variants). Picone’s course was not very different from current

introductory classes in numerical analysis.



Mauro Picone and the INAC (cont.)

In the chapter on linear systems, Picone wrote:

The problem of solving linear systems has enormous importance in

applied mathematics, since nearly all computational procedures lead

to such problem. The problem can be considered as a multivariate

generalization of ordinary division... While for ordinary division there

exist automatic machines, things are not so for the solution of

linear systems, although some great minds have set themselves this

problem in the past. Indeed, the first researches go back to Lord

Kelvin. Recently, Professor Mallock of Cambridge University has

built a highly original electrical machine which can solve systems of

n ≤ 10 equations in as many unknowns. This and other recent ef-

forts, however, are far from giving a practical solution to the problem.



Lamberto Cesari’s work on iterative methods

Lamberto Cesari (Bologna, 1910; Ann Arbor, MI, 1990)

studied at the Scuola Normale in Pisa under L. Tonelli,

then in 1934 went to Germany to specialize under the

famous mathematician C. Carathéodory. After his return

from Germany, Cesari joined the INAC in Rome.

While at INAC Cesari wrote the paper Sulla risoluzione dei

sistemi di equazioni lineari per approssimazioni successive

(La Ricerca Scientifica, 8, 1937, pp. 512–522.)

Cesari later became a leading expert in various branches of mathemat-

ical analysis and optimization. In 1948 he emigrated to the US, where

he had a brilliant career, first at Purdue, then at Michigan.



Lamberto Cesari (1910-1990)



Lamberto Cesari’s 1937 paper

Cesari gives a general theory of stationary iterations in terms

of matrix splittings. Having written the linear system as

ωAx = ωb, ω 6= 0 ,

he introduces the splitting

ωA = B + C, det (B) 6= 0 ,

and proves that the stationary iteration associated with this

splitting converges for any choice of the initial guess if and

only if the smallest (in magnitude) root of

det (B + λC) = 0

is greater than 1. This is equivalent to the usual condition

ρ(B−1C) < 1.



Lamberto Cesari’s 1937 paper (cont.)

In the same paper, Cesari applies his general theory to

the methods of Jacobi, Seidel, and von Mises (stationary

Richardson). He uses ω 6= 1 only for the latter.

In the case of von Mises’ method (analyzed for the SPD

case), Cesari notes that, regardless of ω, the rate of

convergence of the method deteriorates as the ratio of the

extreme eigenvalues of A increases. He writes:

In practice, we found that already for λmax(A)
λmin(A) > 10 the

method of von Mises converges too slowly.

This observation leads Cesari to the idea of polynomial pre-

conditioning.



Lamberto Cesari’s 1937 paper (cont.)

Given estimates a ≈ λmin(A) and b ≈ λmax(A), Cesari

determines the coefficients of the polynomial p(x) of degree

k such that the ratio of the maximum and the minimum of

q(x) = xp(x) is minimized over [a, b], for 1 ≤ k ≤ 4.

The transformed system

p(A)Ax = p(A)b ,

which he shows to be equivalent to the original one, can be

expected to have a smaller condition number.

Cesari ends the paper with a brief discussion of when this approach may

be useful and gives the results of numerical experiments with all three

methods on a 3× 3 example using a polynomial of degree k = 1.



Lamberto Cesari’s 1937 paper (cont.)

Cesari’s paper was not without influence: it is cited,

sometimes at length, in important papers by Forsythe

(1952-1953) and in the books by Bodewig (1956), Faddeev

& Faddeeva (1960), Householder (1964), Wachspress

(1966) and Saad (2003) among others.

It is, however, not cited in the influential books of Varga

(1962) and Young (1971).

Cesari’s paper is important for our story also because of the

effect it had on a former student and assistant of Picone.



Cimmino’s method

Gianfranco Cimmino (Naples, 1908; Bologna, 1989) grad-

uated at Naples with Picone in 1927 with a thesis on

approximate solution methods for the heat equation in 2D.

After a period spent at INAC and a study stay in Germany

(again with Carathéodory), he undertook a brilliant academic

career. He became a full professor in 1938, and in 1939

moved to the chair of Mathematical Analysis at Bologna,

where he spent his entire career.

Cimmino’s work was mostly in analysis: theory of linear elliptic PDEs,

calculus of variations, integral equations, functional analysis, etc. He also

wrote 5-6 short papers on matrix computations.



Gianfranco Cimmino (1908-1989)



Cimmino’s method (cont.)

In 1938 La Ricerca Scientifica published a short (8 pages)

paper by Cimmino, titled Calcolo approssimato per le

soluzioni dei sistemi lineari.

As Picone himself explained in a brief introductory note,

after reading Cesari’s paper Cimmino reminded him of a

method that he had developed around 1932 while he was

at INAC. Cimmino’s method did not appear to fit under

Cesari’s “systematic treatment,” yet

it is most worthy of consideration in the applications because of its gen-

erality, its efficiency and, finally, because of its guaranteed convergence

which can make the method practicable in many cases. Therefore, I

consider it useful to publish in this journal Prof. Cimmino’s note on the

above mentioned method, note that he has accepted to write upon my

insistent invitation.



Cimmino’s method (cont.)

Cimmino considers the system Ax = b where A is a real

n× n matrix, initially assumed to be nonsingular.

If aTi = [ai1, ai2, . . . , ain] denotes the ith row of A, the so-

lution x∗ = A−1b is the unique intersection point of the n

hyperplanes described by

〈ai,x〉 = bi, i = 1, 2, . . . , n . (1)

Given an initial approximation x(0), Cimmino takes, for each

i = 1, 2, . . . , n, the reflection (mirror image) x(0)
i of x(0) with

respect to the hyperplane (1):

x(0)
i = x(0) + 2

bi − 〈ai,x(0)〉
‖ai‖2

ai . (2)



Cimmino’s method (cont.)

Given n arbitrarily chosen positive quantities m1, . . . ,mn,

Cimmino constructs the next iterate x(1) as the center of

gravity of the system formed by placing the n masses mi

at the points x(0)
i given by (2), for i = 1, 2, . . . , n. Cimmino

notes that the initial point x(0) and its reflections with respect

to the n hyperplanes (1) all lie on a hypersphere the center

of which is precisely the point common to the n hyperplanes,

namely, the solution of the linear system. Because the center

of gravity of the system of masses {mi}ni=1 must necessarily

fall inside this hypersphere, it follows that the new iterate

x(1) is a better approximation to the solution than x(0):

‖x(1) − x∗‖ < ‖x(0) − x∗‖ .

The procedure is then repeated starting with x(1).



Cimmino’s method (n = 2)

From C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.



Cimmino’s method (cont.)

Cimmino proves that his method is always convergent.

In the same paper Cimmino shows that the iterates converge

to a solution of Ax = b even in the case of a singular (but

consistent) system, provided that rank (A) ≥ 2.

He then notes that the sequence {x(k)} converges even

when the linear system is inconsistent, always provided that

rank (A) ≥ 2. Much later (1967) Cimmino wrote:

The latter observation, however, is just a curiosity, being

obviously devoid of any practical usefulness. [sic!]

It can be shown that for an appropriate choice of the masses

mi, the sequence {x(k)} converges to the minimum 2-norm

solution of ‖b−Ax‖2 = min.



Cimmino’s method (cont.)

In matrix form, Cimmino’s method can be written as follows:

x(k+1) = x(k) +
2

µ
ATD(b−Ax(k))

(k = 0,1, . . .), where

D = diag

(
m1

‖a1‖2
,
m2

‖a2‖2
, . . . ,

mn

‖an‖2

)

and µ =
n∑
i=1

mi.

Therefore, Cimmino’s method is a special case of von Mises’

method (stationary Richardson) on the normal equations if

we let mi = ‖ai‖2. Cimmino’s method corresponds to us-

ing ω = 2/µ for the relaxation factor. With such a choice,

convergence is guaranteed.



Cimmino’s legacy

Cimmino’s method, like the contemporary (and related)

method of Kaczmarz, did not attract much attention until

many years later.

Although it was described by Forsythe (1953) and in the

books of Bodewig (1956), Householder (1964), Gastinel

(1966) and others, I was able to find only 8 journal citations

of Cimmino’s 1938 paper until 1980.

After 1980, the number of papers and books citing Cimmino’s

(as well as Kaczmarz’s) method picks up dramatically, and it

is now in the hundreds. Moreover, both methods have been

reinvented several times.



Kaczmarz’s method (n = 2)

From C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.



Cimmino’s legacy (cont.)

Two major reasons for this surge in popularity are the

fact that the method has the regularizing property when

applied to discrete ill-posed problems, and the high degree

of parallelism of the algorithm.

Today, Cimmino’s method is rarely used to solve linear

systems. Rather, it forms the basis for algorithms that are

used to solve systems of inequalities (the so-called convex

feasibility problem), and it has applications in computerized

tomography, radiation treatment planning, medical imaging,

etc.

Indeed, most citations occur in the medical physics literature,

an outcome that would have pleased Gianfranco Cimmino.
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